Gustavo Rodrigues Pedrino
Universidade Federal de Goiás
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gustavo Rodrigues Pedrino.
PLOS ONE | 2012
Gustavo Rodrigues Pedrino; André Henrique Freiria-Oliveira; Debora S. A. Colombari; Daniel Alves Rosa; Sergio Luiz Cravo
Renal vasodilation and sympathoinhibition are recognized responses induced by hypernatremia, but the central neural pathways underlying such responses are not yet entirely understood. Several findings suggest that A2 noradrenergic neurons, which are found in the nucleus of the solitary tract (NTS), play a role in the pathways that contribute to body fluid homeostasis and cardiovascular regulation. The purpose of this study was to determine the effects of selective lesions of A2 neurons on the renal vasodilation and sympathoinhibition induced by hypertonic saline (HS) infusion. Male Wistar rats (280–350 g) received an injection into the NTS of anti-dopamine-beta-hydroxylase-saporin (A2 lesion; 6.3 ng in 60 nl; n = 6) or free saporin (sham; 1.3 ng in 60 nl; n = 7). Two weeks later, the rats were anesthetized (urethane 1.2 g⋅kg−1 b.wt., i.v.) and the blood pressure, renal blood flow (RBF), renal vascular conductance (RVC) and renal sympathetic nerve activity (RSNA) were recorded. In sham rats, the HS infusion (3 M NaCl, 1.8 ml⋅kg−1 b.wt., i.v.) induced transient hypertension (peak at 10 min after HS; 9±2.7 mmHg) and increases in the RBF and RVC (141±7.9% and 140±7.9% of baseline at 60 min after HS, respectively). HS infusion also decreased the RSNA (−45±5.0% at 10 min after HS) throughout the experimental period. In the A2-lesioned rats, the HS infusion induced transient hypertension (6±1.4 mmHg at 10 min after HS), as well as increased RBF and RVC (133±5.2% and 134±6.9% of baseline at 60 min after HS, respectively). However, in these rats, the HS failed to reduce the RSNA (115±3.1% at 10 min after HS). The extent of the catecholaminergic lesions was confirmed by immunocytochemistry. These results suggest that A2 noradrenergic neurons are components of the neural pathways regulating the composition of the extracellular fluid compartment and are selectively involved in hypernatremia-induced sympathoinhibition.
Experimental Physiology | 2010
Glenn M. Toney; Gustavo Rodrigues Pedrino; Gregory D. Fink; John W. Osborn
Hypertension caused by chronic infusion of angiotensin II (Ang II) in experimental animals is likely to be mediated, at least in part, by an elevation of ongoing sympathetic nerve activity (SNA). However, the contribution of SNA relative to non‐neural mechanisms in mediating Ang II‐induced hypertension is an area of intense debate and remains unresolved. We hypothesize that sympathoexcitatory actions of Ang II are directly related to the level of dietary salt intake. To test this hypothesis, chronically instrumented rats were placed on a 0.1 (low), 0.4 (normal) or 2.0% NaCl diet (high) and, following a control period, administered Ang II (150 ng kg−1 min−1, s.c.) for 10–14 days. The hypertensive response to Ang II was greatest in rats on the high‐salt diet (Ang II–salt hypertension), which was associated with increased ‘whole body’ sympathetic activity as measured by noradrenaline spillover and ganglionic blockade. Indirect and direct measures of organ‐specific SNA revealed a distinct ‘sympathetic signature’ in Ang II–salt rats characterized by increased SNA to the splanchnic vascular bed, transiently reduced renal SNA and no change in SNA to the hindlimbs. Electrophysiological experiments indicate that increased sympathetic outflow in Ang II–salt rats is unlikely to involve activation of rostral ventrolateral medulla (RVLM) vasomotor neurons with barosensitive cardiac rhythmic discharge. Instead, another set of RVLM neurons that discharge in discrete bursts have exaggerated spontaneous activity in rats with Ang II–salt hypertension. Although their discharge is not cardiac rhythmic at resting levels of arterial pressure, it nevertheless appears to be barosensitive. Therefore, these burst‐firing RVLM neurons presumably serve a vasomotor function, consistent with their having axonal projections to the spinal cord. Bursting discharge of these neurons is respiratory rhythmic and driven by the respiratory network. Given that splanchnic SNA is strongly coupled to respiration, we hypothesize that enhanced central respiratory–vasomotor neuron coupling in the RVLM could be an important mechanism that contributes to exaggerated splanchnic sympathetic outflow in Ang II–salt hypertension. This hypothesis remains to be tested directly in future investigations.
Autonomic Neuroscience: Basic and Clinical | 2005
Gustavo Rodrigues Pedrino; Celisa Tiemi Nakagawa Sera; Sergio Luiz Cravo; Debora S. A. Colombari
The anteroventral third ventricle (AV3V) region is a critical area of the forebrain, acting on fluid and electrolyte balance and maintaining cardiovascular homeostasis. The purpose of this study was to determine the effects of lesions to the anteroventral third ventricle region on cardiovascular responses to intravenous hypertonic saline (HS) infusion. Male Wistar rats were anesthetized with urethane. The femoral artery and jugular vein were cannulated to record mean arterial pressure (MAP) and infuse hypertonic saline (3M NaCl, 0.18 mL/100 g bw, over 1 min), respectively. Renal blood flow (RBF) was recorded by ultrasonic transit-time flow probes. Renal vascular conductance (RVC) was calculated as renal blood flow to mean arterial pressure ratio and expressed as percentage of baseline. After hypertonic saline infusion in sham animals, renal blood flow and renal vascular conductance increased to 137+10% and 125+7% (10 min), and 141+/-10% and 133+/-10% (60 min), respectively. Increases in mean arterial pressure (20-min peak: 12+/-3 mm Hg) were also observed. An acute lesion in the AV3V region (DC, 2 mA 25s) 30 min before infusion abrogated the effects of hypertonic saline. Mean arterial pressure was unchanged and renal blood flow and renal vascular conductance were 107+/-7% and 103+/-6% (10 min), and 107+/-4 and 106+/-4% (60 min), respectively. Marked tachycardia was observed immediately after lesion. Responses of chronic sham or lesioned rats were similar to those of acute animals. However, in chronic lesioned rats, hypertonic saline induced sustained hypertension. These results demonstrate that integrity of the AV3V region is essential for the renal vasodilation that follows acute changes in extracellular fluid compartment composition.
Autonomic Neuroscience: Basic and Clinical | 2008
Gustavo Rodrigues Pedrino; Daniel Alves Rosa; Willian Seiji Korim; Sergio Luiz Cravo
Several findings suggest that A1 noradrenergic neurons in the caudal ventrolateral medulla (CVLM) contribute to body fluid homeostasis and cardiovascular regulation. Recently we demonstrated that the renal vasodilation induced by infusion of hypertonic saline (HS) depends on the integrity of the A1 neurons. Here we determined the effect of lesions of these neurons on the inhibition of the renal sympathetic nerve activity (RSNA) induced by HS infusion. All experiments were performed in Wistar rats (280-350 g). A1 neurons were lesioned by microinjections of antidopamine-beta-hydroxylase-saporin (6.3 ng in 60 nl) into the CVLM (n=5), whereas sham rats received microinjections of free saporin (1.3 ng in 60 nl, n=10). Two weeks later, rats were anesthetized (urethane 1.2 g/kg, iv), and instrumented for recording of arterial pressure and RSNA. In sham rats, HS infusion (3 M NaCl, 0.18 ml/100 g bw, iv) induced a transient (</=30 min) hypertension (peak at 10 min; 9+/-5 mm Hg) and a fall in RSNA (-32+/-7% of baseline at 10 min). A1-lesions increased the duration of the pressor response induced by HS infusion (16+/-2 mm Hg at 60 min) and abolished the fall in RSNA (-6+/-8% of baseline at 10 min). Catecholaminergic lesions extensions were confirmed by immunocytochemistry. Unilateral renal denervation reduced the renal vasodilatation induced by HS infusion (112+/-7% in denervated rats versus 127+/-4% in sham, 20 min after HS). These results suggest that A1 noradrenergic neurons are involved in the sympathoinhibition and consequent renal vasodilatation to acute changes in the extracellular fluid compartment.
Experimental Physiology | 2006
Gustavo Rodrigues Pedrino; Isabela Maurino; Debora S. A. Colombari; Sergio Luiz Cravo
Several findings suggest that catecholaminergic neurones in the caudal ventrolateral medulla (CVLM) contribute to body fluid homeostasis and cardiovascular regulation. The present study sought to determine the effects of lesions of these neurones on the cardiovascular responses induced by changes in circulating volume. All experiments were performed in male Wistar rats (320–360 g). Medullary catecholaminergic neurones were lesioned by microinjection of anti‐dopamine β‐hydroxylase–saporin (6.3 ng in 60 nl; SAP rats, n= 14) into the CVLM, whereas sham rats received microinjections of free saporin (1.3 ng in 60 nl, n= 15). Two weeks later, rats were anaesthetized (urethane, 1.2 g kg−1, i.v.), instrumented for measurement of mean arterial pressure (MAP), renal blood flow (RBF) and renal vascular conductance (RVC), and infused with hypertonic saline (HS; 3 m NaCl, 0.18 ml (100 g body weight)−1, i.v.) or an isotonic solution (volume expansion, VE; 4% Ficoll, 1% of body weight, i.v.). In sham rats, HS induced sustained increases in RBF and RVC (155 ± 7 and 145 ± 6% of baseline, at 20 min after HS). In SAP rats, RBF responses to HS were blunted (125 ± 6%) and RVC increases were abolished (108 ± 5%) 20 min after HS. Isotonic solution increased RBF and RVC in sham rats (149 ± 10 and 145 ± 12% of baseline, respectively, at 20 min). These responses were reduced in SAP rats (131 ± 6 and 126 ± 5%, respectively, at 20 min). Pressor responses to HS were larger in SAP rats than in sham rats (17 ± 5 versus 9 ± 2 mmHg, at 20 min), whereas during VE these responses were similar in both groups (6 ± 3 versus 4 ± 6 mmHg, at 20 min). Immunohistochemical analysis indicates that microinjections of anti‐DβH–saporin produced extensive destruction within the A1/C1 cell groups in the CVLM. These results suggest that catecholaminergic neurones mediate the cardiovascular responses to VE or increases in plasma sodium levels.
Clinical and Experimental Pharmacology and Physiology | 2009
Gustavo Rodrigues Pedrino; Luciana R. Di Mônaco; Sergio L. Cravo
1. The renal vasodilation induced by infusion of hypertonic saline (HS) in anaesthetized rats has been shown to depend on the integrity of the median preoptic nucleus (MnPO), as well as noradrenergic afferents to this nucleus. In the present study, we sought to determine the role of α1 and α2‐adrenoceptors in the MnPO in cardiovascular responses induced by intravenous HS infusion (3 mol/L NaCl; 1.8 mL/kg, i.v., over 1 min).
Brain Research Bulletin | 2008
Debora S. A. Colombari; Gustavo Rodrigues Pedrino; André Henrique Freiria-Oliveira; Willian Seiji Korim; Isabela Maurino; Sergio Luiz Cravo
Several findings suggest that catecholaminergic neurons in the caudal ventrolateral medulla (CVLM) contribute to body fluid homeostasis and cardiovascular regulation. From the CVLM other areas in central nervous system involved in cardiovascular regulation and hydroelectrolyte balance can be activated. Therefore, the aim of the present study was to investigate the effects of lesions of these neurons on 0.3M NaCl and water intake induced by subcutaneous injection of furosemide (FURO)+captopril (CAP) or 36 h of water deprivation/partial hydration with only water (WD/PR). Male Wistar rats (320-360 g) were submitted to medullary catecholaminergic neuron lesions by microinjection of anti-dopamine-beta-hydroxylase-saporin (anti-DbetaH-saporin; 6.3 ng in 60 nl) into the CVLM (SAP-rats). Sham rats received microinjections of free saporin (1.3 ng in 60 nl) in the same region. In SAP-rats, the 0.3M NaCl intake was increased after FURO+CAP (6.8+/-1.0 ml/2h, vs. sham: 3.7+/-0.7 ml/2h) as well as after WD/PR (11.1+/-1.3 ml/2h vs. sham: 6.1+/-1.8 ml/2h). Conversely, in SAP-rats, the water intake induced by FURO+CAP (14.8+/-1.3 ml/2h, vs. sham: 14.1+/-1.6 ml/2h) or by WD/PR (3.6+/-0.9 ml/2h, vs. sham: 3.2+/-1.1 ml/2h) was not different from sham rats. Immunohistochemical analysis indicates that microinjections of anti-DbetaH-saporin produced extensive destruction within the A1 cell groups in the CVLM. These results suggest an inhibitory role for medullary catecholaminergic neurons on sodium appetite.
Shock | 2009
Eloísa Ferreira de Almeida Costa; Gustavo Rodrigues Pedrino; Oswaldo U. Lopes; Sergio Luiz Cravo
The peripheral hyperosmolarity elicited by intravenous infusion of hypertonic saline (HS) can be beneficial in treating hemorrhagic shock. However, the neural mechanisms involved in this resuscitation remain unknown. The present study sought to determine the effects of selective baroreceptor denervation on arterial blood pressure response during HS resuscitation in rats submitted to hemorrhagic shock. Male Wistar rats (280-320 g) were anesthetized with thiopental sodium (40 mg/kg, i.v.), and the femoral artery and jugular vein were cannulated for MAP and heart rate recording and HS infusion (3 mol/L NaCl; 0.18 mL/100 g body weight, >2 min). Hemorrhagic shock was obtained by withdrawing blood over 30 min until a MAP of 60 mmHg was obtained. This level of MAP was maintained for a further 30 min through subsequent blood withdrawal or reinfusion. Next, animals were divided into selective aortic and/or carotid denervation or sham groups before infusing HS. Results showed that in the sham group (n = 12), HS infusion increased MAP to levels close to baseline (from 65 ± 3 to 112 ± 5 mmHg, 10 min after HS). In the aortic denervated group (n = 10), HS infusion also increased MAP (from 54 ± 3 to 112 ± 5 mmHg, 10 min after HS). In contrast, in the carotid denervation group (n = 8), the increase in MAP induced by HS infusion was abolished (from 53 ± 3 to 73 ± 12 mmHg, 10 min after HS). These results indicate that in hemorrhaged rats, HS infusion produces a pressor effect that is likely to be mediated through carotid rather than aortic baroreceptors.
Frontiers in Physiology | 2015
Marina Dos Santos Moreira; Izabella Silva de Jesus Pinto; Aline A. Mourão; James Oluwagbamigbe Fajemiroye; Eduardo Colombari; Ângela Adamski da Silva Reis; André Henrique Freiria-Oliveira; Marcos L. Ferreira-Neto; Gustavo Rodrigues Pedrino
The metabolic syndrome (MS), formally known as syndrome X, is a clustering of several risk factors such as obesity, hypertension, insulin resistance, and dislypidemia which could lead to the development of diabetes and cardiovascular diseases (CVD). The frequent changes in the definition and diagnostic criteria of MS are indications of the controversy and the challenges surrounding the understanding of this syndrome among researchers. Obesity and insulin resistance are leading risk factors of MS. Moreover, obesity and hypertension are closely associated to the increase and aggravation of oxidative stress. The recommended treatment of MS frequently involves change of lifestyles to prevent weight gain. MS is not only an important screening tool for the identification of individuals at high risk of CVD and diabetes but also an indicator of suitable treatment. As sympathetic disturbances and oxidative stress are often associated with obesity and hypertension, the present review summarizes the role of sympathetic nervous system and oxidative stress in the MS.
Autonomic Neuroscience: Basic and Clinical | 2011
Gustavo Rodrigues Pedrino; Marcio V. Rossi; Guus H.M. Schoorlemmer; Oswaldo U. Lopes; Sergio L. Cravo
The peripheral hyperosmolarity elicited by intravenous infusion of hypertonic saline brings potential benefits to the treatment of hemorrhage. The neural mechanisms involved in these beneficial effects remain unknown. The present study examines the role of carotid chemoreceptors in cardiovascular responses induced by hypertonic saline after hypovolemic hemorrhage in rats. Male Wistar rats (300-400 g) were anesthetized with thiopental, and instrumented for recording of mean arterial pressure. Arterial pressure was reduced to 60 mm Hg by withdrawal of arterial blood over 10 min, and maintained at this level for 60 min by withdrawal or infusion of blood. In control rats (n = 8) with intact chemoreceptors, the subsequent intravenous infusion of hypertonic saline (3M NaCl, 1.8 ml kg(-1) body weight, in 2 min) restored blood pressure (pressure increased from 61 ± 4 to 118 ± 5 mm Hg). In experimental rats (n = 8), the carotid body arteries were tied, 30 min after the beginning of the hypotensive phase, leaving the carotid chemoreceptors ischemic. In these rats, hypertonic saline failed to restore blood pressure (pressure increased from 55 ± 1 to 70 ± 6 mm Hg). These findings suggest that the restoration of blood pressure after hypovolemic hemorrhage induced by hypertonic saline depends on intact carotid chemoreceptors.