Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guus Rijnders is active.

Publication


Featured researches published by Guus Rijnders.


Nature Materials | 2007

Magnetic effects at the interface between non-magnetic oxides

Alexander Brinkman; Mark Huijben; M. van Zalk; J. Huijben; U. Zeitler; J.C. Maan; W. G. van der Wiel; Guus Rijnders; Dave H.A. Blank; H. Hilgenkamp

The electronic reconstruction at the interface between two insulating oxides can give rise to a highly conductive interface. Here we show how, in analogy to this remarkable interface-induced conductivity, magnetism can be induced at the interface between the otherwise non-magnetic insulating perovskites SrTiO3 and LaAlO3. A large negative magnetoresistance of the interface is found, together with a logarithmic temperature dependence of the sheet resistance. At low temperatures, the sheet resistance reveals magnetic hysteresis. Magnetic ordering is a key issue in solid-state science and its underlying mechanisms are still the subject of intense research. In particular, the interplay between localized magnetic moments and the spin of itinerant conduction electrons in a solid gives rise to intriguing many-body effects such as Ruderman-Kittel-Kasuya-Yosida interactions, the Kondo effect and carrier-induced ferromagnetism in diluted magnetic semiconductors. The conducting oxide interface now provides a versatile system to induce and manipulate magnetic moments in otherwise non-magnetic materials.


Applied Physics Letters | 1998

Quasi-ideal strontium titanate crystal surfaces through formation of stontium hydroxide

Gertjan Koster; B.L. Kropman; Guus Rijnders; Dave H.A. Blank; Horst Rogalla

In recent years, well-defined and nearly perfect single crystal surfaces of oxide perovskites have become increasingly important. A single terminated surface is a prerequisite for reproducible thin film growth and fundamental growth studies. In this work, atomic and lateral force microscopy have been used to display different terminations of SrTiO3. We observe hydroxylation of the topmost SrO layer after immersion of SrTiO3 in water, which is used to enhance the etch-selectivity of SrO relative to TiO2 in a buffered HF solution. We reproducibly obtain perfect and single terminated surfaces, irrespective of the initial state of polished surfaces and the pH value of the HF solution. This approach to the problem might be used for a variety of multi-component oxide single crystals. True two-dimensional reflection high-energy electron diffraction intensity oscillations are observed during homo epitaxial growth using pulsed laser deposition on these surfaces.


Nature Materials | 2011

Flexoelectric rotation of polarization in ferroelectric thin films

Gustau Catalan; A. Lubk; A. H. G. Vlooswijk; E. Snoeck; C. Magen; A. Janssens; Gijsbert Rispens; Guus Rijnders; Dave H.A. Blank; Beatriz Noheda

Strain engineering enables modification of the properties of thin films using the stress from the substrates on which they are grown. Strain may be relaxed, however, and this can also modify the properties thanks to the coupling between strain gradient and polarization known as flexoelectricity. Here we have studied the strain distribution inside epitaxial films of the archetypal ferroelectric PbTiO(3), where the mismatch with the substrate is relaxed through the formation of domains (twins). Synchrotron X-ray diffraction and high-resolution scanning transmission electron microscopy reveal an intricate strain distribution, with gradients in both the vertical and, unexpectedly, the horizontal direction. These gradients generate a horizontal flexoelectricity that forces the spontaneous polarization to rotate away from the normal. Polar rotations are a characteristic of compositionally engineered morphotropic phase boundary ferroelectrics with high piezoelectricity; flexoelectricity provides an alternative route for generating such rotations in standard ferroelectrics using purely physical means.


Physical Review B | 2008

Critical thickness and orbital ordering in ultrathin La0.7Sr0.3MnO3 films

M. Huijben; Lane W. Martin; Ying-Hao Chu; M. B. Holcomb; Pu Yu; Guus Rijnders; Dave H. A. Blank; R. Ramesh

Detailed analysis of transport, magnetism, and x-ray absorption spectroscopy measurements on ultrathin La0.7Sr0.3MnO3 films with thicknesses from 3 to 70 unit cells resulted in the identification of a lower critical thickness for a nonmetallic nonferromagnetic layer at the interface with the SrTiO3 (001) substrate of only three unit cells (~12 A). Furthermore, linear-dichroism measurements demonstrate the presence of a preferred (x2-y2) in-plane orbital ordering for all layer thicknesses without any orbital reconstruction at the interface. A crucial requirement for the accurate study of these ultrathin films is a controlled growth process, offering the coexistence of layer-by-layer growth and bulklike magnetic/transport properties.


Applied Physics Letters | 1997

In-situ monitoring during pulsed laser deposition of complex oxides using reflection high energy electron diffraction under high oxygen pressure

Guus Rijnders; Gertjan Koster; Dave H. A. Blank; Horst Rogalla

A suitable in situ monitoring technique for growth of thin films is reflection high energy electron diffraction (RHEED). Deposition techniques, like pulsed laser deposition (PLD) and sputter deposition, used for fabrication of complex oxide thin films use relatively high oxygen pressures (up to 100 Pa) and are, therefore, not compatible with ultrahigh vacuum RHEED equipment. We have developed a RHEED system which can be used for growth monitoring during the deposition of complex oxides at standard PLD conditions. We are able to increase the deposition pressure up to 50 Pa using a two-stage differential pumping system. Clear RHEED patterns are observable at these high pressures. The applicability of this system is demonstrated with the study of homoepitaxial growth of SrTiO3 as well as the heteroepitaxial growth of YBa2Cu3O7-δ on SrTiO3. Intensity oscillations of the RHEED reflections, indicating two-dimensional growth, are observed up to several tens of nanometers film thickness in both cases


Physical Review B | 2011

Misfit strain accommodation in epitaxial ABO3 perovskites: Lattice rotations and lattice modulations

Arturas Vailionis; Hans Boschker; Wolter Siemons; Evert Pieter Houwman; Dave H.A. Blank; Guus Rijnders; Gertjan Koster

We present a study of the lattice response to the compressive and tensile biaxial stress in La0.67Sr0.33MnO3 (LSMO) and SrRuO3 (SRO) thinfilms grown on a variety of single-crystal substrates: SrTiO3,DyScO3, NdGaO3, and (La,Sr)(Al,Ta)O3. The results show that, in thin films under misfit strain, both SRO and LSMO lattices, which in bulk form have orthorhombic (SRO) and rhombohedral (LSMO) structures, assume unit cells that are monoclinic under compressive stress and tetragonal under tensile stress. The applied stress effectively modifies the BO6 octahedra rotations, whose degree and direction can be controlled by the magnitude and sign of the misfit strain. Such lattice distortions change the B-O-B bond angles and therefore are expected to affect magnetic and electronic properties of the ABO3 perovskites.


Nano Letters | 2011

Metallic and Insulating Interfaces of Amorphous SrTiO3-Based Oxide Heterostructures

Yunzhong Chen; Nini Pryds; Jos ee E. Kleibeuker; Gertjan Koster; Ji-Rong Sun; Eugen Stamate; Bao-gen Shen; Guus Rijnders; Søren Linderoth

The conductance confined at the interface of complex oxide heterostructures provides new opportunities to explore nanoelectronic as well as nanoionic devices. Herein we show that metallic interfaces can be realized in SrTiO(3)-based heterostructures with various insulating overlayers of amorphous LaAlO(3), SrTiO(3), and yttria-stabilized zirconia films. On the other hand, samples of amorphous La(7/8)Sr(1/8)MnO(3) films on SrTiO(3) substrates remain insulating. The interfacial conductivity results from the formation of oxygen vacancies near the interface, suggesting that the redox reactions on the surface of SrTiO(3) substrates play an important role.


Physical Review Letters | 2009

Orbital Reconstruction and the Two-Dimensional Electron Gas at the LaAlO3/SrTiO3 Interface

M. Salluzzo; J. C. Cezar; N. B. Brookes; Valentina Bisogni; G. M. De Luca; C. Richter; Stefan Thiel; J. Mannhart; Mark Huijben; Alexander Brinkman; Guus Rijnders; G. Ghiringhelli

In 2004, Ohtomo and Hwang discovered that an electron gas is created at the interface between insulating LaAlO3 and SrTiO3 compounds. Here we show that the generation of a conducting electron gas is related to an orbital reconstruction occurring at the LaAlO3/SrTiO3 interface. Our results are based on extensive investigations of the electronic properties and of the orbital structure of the interface using x-ray absorption spectroscopy. In particular, we find that the degeneracy of the Ti 3d states is fully removed and that the Ti 3d xy levels become the first available states for conducting electrons.


Nature | 2003

Ordering and manipulation of the magnetic moments in large-scale superconducting pi-loop arrays

H. Hilgenkamp; Ariando; H.J.H. Smilde; Dave H.A. Blank; Guus Rijnders; Horst Rogalla; J. R. Kirtley; Chang C. Tsuei

The phase of the macroscopic electron-pair wavefunction in a superconductor can vary only by multiples of 2π when going around a closed contour. This results in quantization of magnetic flux, one of the most striking demonstrations of quantum phase coherence in superconductors. By using superconductors with unconventional pairing symmetry, or by incorporating π-Josephson junctions, a phase shift of π can be introduced in such loops. Under appropriate conditions, this phase shift results in doubly degenerate time-reversed ground states, which are characterized by the spontaneous generation of half quanta of magnetic flux, with magnitude 1/2 Φ0(Φ0 = h/2e = 2.07 × 10-15 Wb) (ref. 7). Until now, it has only been possible to generate individual half flux quanta. Here we report the realization of large-scale coupled π-loop arrays based on YBa2Cu3O7-Au-Nb Josephson contacts. Scanning SQUID (superconducting quantum interference device) microscopy has been used to study the ordering of half flux quanta in these structures. The possibility of manipulating the polarities of individual half flux quanta is also demonstrated. These π-loop arrays are of interest as model systems for studying magnetic phenomena—including frustration effects—in Ising antiferromagnets. Furthermore, studies of coupled π-loops can be useful for designing quantum computers based on flux-qubits with viable quantum error correction capabilities.


Applied Physics Letters | 2004

Enhanced surface diffusion through termination conversion during epitaxial SrRuO3 growth

Guus Rijnders; Dave H. A. Blank; J. Choi; Chang-Beom Eom

During the initial growth of the ferromagnetic oxide SrRuO3 on TiO2-terminated SrTiO3, we observe a self-organized conversion of the terminating atomic layer from RuO2 to SrO. This conversion induces an abrupt change in growth mode from layer by layer to growth by step advancement, indicating a large enhancement of the surface diffusivity. This growth mode enables the growth of single-crystalline and single-domain thin films. Both conversion and the resulting growth mode enable the control of the interface properties in heteroepitaxial multilayer structures on an atomic level.

Collaboration


Dive into the Guus Rijnders's collaboration.

Top Co-Authors

Avatar

Gertjan Koster

MESA+ Institute for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dave H. A. Blank

MESA+ Institute for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar

Mark Huijben

MESA+ Institute for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Minh D. Nguyen

MESA+ Institute for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar

H. Hilgenkamp

MESA+ Institute for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar

Evert Pieter Houwman

MESA+ Institute for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar

Alexander Brinkman

MESA+ Institute for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar

Matthijn Dekkers

MESA+ Institute for Nanotechnology

View shared research outputs
Researchain Logo
Decentralizing Knowledge