Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guus Sliepen is active.

Publication


Featured researches published by Guus Sliepen.


Proceedings of SPIE | 2008

Large fully retractable telescope enclosures still closable in strong wind

Felix C. M. Bettonvil; Robert H. Hammerschlag; Aswin P. L. Jägers; Guus Sliepen

Two prototypes of fully retractable enclosures with diameters of 7 and 9 m have been built for the high-resolution solar telescopes DOT (Dutch Open Telescope) and GREGOR, both located at the Canary Islands. These enclosures protect the instruments for bad weather and are fully open when the telescopes are in operation. The telescopes and enclosures also operate in hard wind. The prototypes are based on tensioned membrane between movable but stiff bows, which fold together to a ring when opened. The height of the ring is small. The prototypes already survived several storms, with often snow and ice, without any damage, including hurricane Delta with wind speeds up to 68 m/s. The enclosures can still be closed and opened with wind speeds of 20 m/s without any problems or restrictions. The DOT successfully demonstrated the open, wind-flushing concept for astronomical telescopes. It is now widely recognized that also large future telescopes benefit from wind-flushing and retractable enclosures. These telescopes require enclosures with diameters of 30 m until roughly 100 m, the largest sizes for the ELTs (Extreme Large Telescopes), which will be built in the near future. We discuss developments and required technology for the realization of these large sizes.


Proceedings of SPIE | 2008

Fast foldable tent domes

Aswin P. L. Jägers; Guus Sliepen; Felix C. M. Bettonvil; Robert H. Hammerschlag

In the near future ELTs (Extreme Large Telescopes) will be built. Preferably these telescopes should operate without obstructions in the near surrounding to reach optimal seeing conditions and avoid large turbulences with wind-gust accelerations around large obstacles. This applies also to future large solar telescopes. At present two foldable dome prototypes have been built on the Canary Islands: the Dutch Open Telescope (DOT, La Palma) and the GREGOR Telescope (Tenerife), having a diameter of 7 and 9 meter, respectively. The domes are usually fully retracted during observations. The research consists of measurements on the two domes. New camera systems are developed and placed inside the domes for precise dome deformation measurements within 0.1 mm over the whole dome size. Simultaneously, a variety of wind-speed and -direction sensors measure the wind field around the dome. In addition, fast sensitive air-pressure sensors placed on the supporting bows measure the wind pressure. The aim is to predict accurately the expected forces and deformations on up-scaled, fully retractable domes to make their construction more economically. The dimensions of 7 and 9 meter are large enough for realistic on-site tests in gusty wind and will give much more information than wind tunnel experiments.


Proceedings of SPIE | 2010

Foldable dome climate measurements and thermal properties

Guus Sliepen; Aswin P. L. Jägers; Robert H. Hammerschlag; Felix C. M. Bettonvil

As part of a larger project for measuring various aspects of foldable domes in the context of EST and with support of the Dutch Technology Foundation STW, we have collected over a year of continuous temperature and humidity measurements, both inside and outside the domes of the Dutch Open Telescope (DOT) on La Palma5 and the GREGOR telescope on Tenerife.6 In addition, we have measured the wind field around each dome. Although the structure of both domes is similar, the DOT dome has a single layer of cloth, and is situated on top of an open tower. In contrast, the GREGOR dome has a double layer of cloth, and is situated on top of a tower-shaped building. These differences result in large differences in temperature and humidity insulation when the dome is closed. We will present the changes in temperature and humidity one can expect for each dome within one day, and the statistics for the variations throughout a year. In addition, we will show that the main advantage of a foldable dome is the near instantaneous equilibration of the air inside the volume originally enclosed by the dome and that of the environment outside the dome. This property allows one to operate a telescope without needing expensive air conditioning and dome skin temperature control in order to limit dome and shell seeing effects. The measurements give also information about the weather fluctuations at the sites of the domes. It was observed that on small time scales the temperature fluctuations are significantly greater during the day than during the night.


Proceedings of SPIE | 2010

Seeing measurements with autonomous, short-baseline shadow band rangers

Guus Sliepen; Aswin P. L. Jägers; Felix C. M. Bettonvil; Robert H. Hammerschlag

There is growing interest in measuring seeing at existing and prospective telescope sites. Several methods exist to quantify seeing, one among them is by measuring the scintillation of solar or lunar light using a photodiode. A shadow band ranger (SHABAR) analyses the covariance of the signals from an array of such photodiodes, which allows for the spatial resolution of the index of refraction above the SHABAR device. This allows one to estimate the index of refraction structure parameter as a function of height, C2n(h). Although a SHABAR has a limited range compared to a differential image motion monitor (DIMM) or the latest wavefront sensors, the advantage is that it does not need telescope optics to work. A SHABAR device can be made very compact and can operate independent of other instruments. We describe the design of such a SHABAR device with six photodiodes that can operate virtually indefinitely without requiring human intervention. An inversion algorithm is used to convert the raw scintillation signals of the photodiodes to the desired C2n(h) profile and a value for the Fried parameter r0 at height zero. We show that it is possible to perform inversions of 10 s periods in real time on relatively low-end hardware, such as an Intel Atom based computer, which allows the results to be presented live to astronomers, who can use this information to help make decisions about their observation schedule.


Proceedings of SPIE | 2010

The enclosure for the European Solar Telescope (EST)

Felix C. M. Bettonvil; R. Codina; Robert H. Hammerschlag; Aswin P. L. Jägers; Johannes N. M. Kommers; S.J. van Leverink; Guus Sliepen; Simon Visser

The European Solar Telescope (EST) is a 4-m class solar telescope, which is currently in the conceptual design phase. EST will be located in the Canary Islands and aims at observations with high spectral, spatial and temporal resolution of the solar photosphere and chromosphere. The main purpose of the enclosure is to protect the telescope and instruments from severe weather conditions. An enclosure is also often needed for reducing wind buffeting on the telescope and primary mirror cell, but on the other hand enclosures are generally considered to degrade local seeing. In this contribution we will present the conceptual design of the enclosure for EST. Two different concepts have been studied in more detail: the first being a dome concept with vent gates to enhance local flushing, the other being a retractable enclosure, with an optional windshield. Technically both alternatives seem feasible, but we conclude that the retractable enclosure is the less risky solution, since it allows easier local seeing control and allows the use of a reflecting heat stop in the primary focus. A windshield is effective in reducing wind load on the primary mirror; although preliminary analysis indicate that there are feasible solutions to keep the deformation caused by wind buffeting within the requirements.


Proceedings of SPIE | 2008

Contactless sub-millimeter displacement measurements

Guus Sliepen; Aswin P. L. Jägers; Felix C. M. Bettonvil; Robert H. Hammerschlag

Weather effects on foldable domes, as used at the DOT and GREGOR, are investigated, in particular the correlation between the wind field and the stresses caused to both metal framework and tent clothing. Camera systems measure contactless the displacement of several dome points. The stresses follow from the measured deformation pattern. The cameras placed near the dome floor do not disturb telescope operations. In the set-ups of DOT and GREGOR, these cameras are up to 8 meters away from the measured points and must be able to detect displacements of less than 0.1 mm. The cameras have a FireWire (IEEE1394) interface to eliminate the need for frame grabbers. Each camera captures 15 images of 640 × 480 pixels per second. All data is processed on-site in real-time. In order to get the best estimate for the displacement within the constraints of available processing power, all image processing is done in Fourier-space, with all convolution operations being pre-computed once. A sub-pixel estimate of the peak of the correlation function is made. This enables to process the images of four cameras using only one commodity PC with a dual-core processor, and achieve an effective sensitivity of up to 0.01 mm. The deformation measurements are well correlated to the simultaneous wind measurements. The results are of high interest to upscaling the dome design (ELTs and solar telescopes).


Proceedings of SPIE | 2008

Cornelis Zwaan, open principle, and the future of high-resolution solar telescopes

Robert H. Hammerschlag; Felix C. M. Bettonvil; Aswin P. L. Jägers; Guus Sliepen

It was in the years around 1970 that during site-test campaigns for JOSO masts were erected up till 30 m height with sensors at several heights for the measurement of temperature fluctuations. Cornelis (Kees) Zwaan discovered that the fluctuations decrease drastically at heights from about 15 m and upward when there is some wind. The conclusion from this experience was the open telescope principle: the telescope should be completely free in the air 15 m or more above the ground. The Dutch Open Telescope (DOT) was the pioneering demonstrator of the open-telescope technology. Now that larger high-resolution telescopes come in view, it is time to analyze again the principle: (i) the essentials for proper working of the open principle; (ii) the differences with nighttime observations particularly concerning the seeing; (iii) the design consequences for the new generation of high-resolution solar telescopes.


Proceedings of SPIE | 2010

Mechanical design of a completely open-foldable dome for EST

Robert H. Hammerschlag; Johannes N. M. Kommers; Simon J. van Leverink; Felix C. M. Bettonvil; Simon Visser; Aswin P. L. Jägers; Guus Sliepen

In the context of the EST design study for a 4m-class solar telescope and a study for large open-foldable domes of the Dutch Technology Foundation STW, a design is made for the 20 to 30m diameter range. Detailed designs are made for three specific diameter sizes: 23, 28 and 33m. Smaller-size open-foldable domes based on tensioned cloth and in use at the Dutch Open Telescope (7m) and the GREGOR (9m) have proven to be all-weather stable and very effective for good seeing conditions for solar telescopes. The cloth has shown no degradation over the past 14 (DOT) resp. 6 (GREGOR) years of experience and no permanent elongation with the frequent de-tensioning and tensioning during opening and closing. The application of cloth permits a dome design leaving, when opened, the telescope completely free without any structure over the telescope and no massive structures besides or under it. Basis for the new design is the available prestretched stable cloth, which is nowadays produced in much stronger qualities than used for DOT and GREGOR. The larger curvature radius requires larger tension in the cloth, but combination with stronger cloth fits for the upscaling. Calculations show that the steel construction geometries of the GREGOR dome can be upscaled with a few adjustments. Bearings and drives remain within normal sizes. Cost calculations show that open-foldable domes of this size are remarkably lower in price than closed domes. In addition, an interesting option is presented for a semi-transparent windshield of which the position can be adapted to the wind direction. This shield gives an effective wind protection of the region around the primary mirror without disturbing the wind flows above the shield and without stagnant air or big eddies behind it. It is storm safe and the costs are only a fraction of the open-foldable dome costs.


Proceedings of SPIE | 2010

Data handling and control for the European Solar Telescope

Ilaria Ermolli; Felix C. M. Bettonvil; Gianna Cauzzi; Lluis Cavaller; M. Collados; Paolo Di Marcantonio; Frederic Paletou; Paolo Romano; Jean Aboudarham; R. Cirami; Rosario Cosentino; F. Giorgi; Martine Lafon; Didier Laforgue; Kevin P. Reardon; Guus Sliepen

We introduce the concepts for the control and data handling systems of the European Solar Telescope (EST), the main functional and technical requirements for the definition of these systems, and the outcomes from the trade-off analysis to date. Concerning the telescope control, EST will have performance requirements similar to those of current medium-sized night-time telescopes. On the other hand, the science goals of EST require the simultaneous operation of three instruments and of a large number of detectors. This leads to a projected data flux that will be technologically challenging and exceeds that of most other astronomical projects. We give an overview of the reference design of the control and data handling systems for the EST to date, focusing on the more critical and innovative aspects resulting from the overall design of the telescope.


Proceedings of SPIE | 2010

The pier and building of the European Solar Telescope (EST)

Felix C. M. Bettonvil; R. Codina; A. Gómez Merchán; Robert H. Hammerschlag; J.J.M. Hartman; E. Hernández Suárez; Aswin P. L. Jägers; G. Murga Llano; J.W. Pelser; Guus Sliepen

EST (European Solar Telescope) is a 4-m class solar telescope, which is currently in the conceptual design phase. EST will be located in the Canary Islands and will aim at high spectral, spatial and temporal resolution observations in the photosphere and chromosphere, using a suite of instruments that can produce efficiently two-dimensional spectropolarimetric information of the thermal, dynamic and magnetic properties of the plasma over many scale heights. The pier is defined as the construction that supports the telescope and the enclosure. It needs a certain height to minimize daytime ground turbulence. At the bottom of the pier a large instrument lab is located, 16 m in diameter and 10 m high. To the pier is attached a service building that accommodates all auxiliary services, possibly together with a separate building. Solid concrete- and open framework piers are compared, in terms of stability, thermal properties and flow characteristics and building structures in terms of construction issues. FE and CFD analysis are used to give qualitative insight in the differences between the alternatives. The preferred alternative is a cone shaped pier surrounded by an open framework.

Collaboration


Dive into the Guus Sliepen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anton G. M. van Schie

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Didier Laforgue

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

E. Hernández Suárez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Lluis Cavaller

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

M. Collados

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge