Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guy Derdelinckx is active.

Publication


Featured researches published by Guy Derdelinckx.


Applied Microbiology and Biotechnology | 2003

Yeast flocculation: what brewers should know.

Kevin J. Verstrepen; Guy Derdelinckx; Hubert Verachtert; Freddy R. Delvaux

For many industrial applications in which the yeast Saccharomyces cerevisiae is used, e.g. beer, wine and alcohol production, appropriate flocculation behaviour is certainly one of the most important characteristics of a good production strain. Yeast flocculation is a very complex process that depends on the expression of specific flocculation genes such as FLO1, FLO5, FLO8 and FLO11. The transcriptional activity of the flocculation genes is influenced by the nutritional status of the yeast cells as well as other stress factors. Flocculation is also controlled by factors that affect cell wall composition or morphology. This implies that, during industrial fermentation processes, flocculation is affected by numerous parameters such as nutrient conditions, dissolved oxygen, pH, fermentation temperature, and yeast handling and storage conditions. Theoretically, rational use of these parameters offers the possibility of gaining control over the flocculation process. However, flocculation is a very strain-specific phenomenon, making it difficult to predict specific responses. In addition, certain genes involved in flocculation are extremely variable, causing frequent changes in the flocculation profile of some strains. Therefore, both a profound knowledge of flocculation theory as well as close monitoring and characterisation of the production strain are essential in order to gain maximal control over flocculation. In this review, the various parameters that influence flocculation in real-scale brewing are critically discussed. However, many of the conclusions will also be useful in various other industrial processes where control over yeast flocculation is desirable.


Journal of Bioscience and Bioengineering | 2003

Flavor-active esters : adding fruitiness to beer

Kevin J. Verstrepen; Guy Derdelinckx; Jean-Pierre Dufour; Joris Winderickx; Johan M. Thevelein; Isak S. Pretorius; Freddy R. Delvaux

As they are responsible for the fruity character of fermented beverages, volatile esters constitute an important group of aromatic compounds in beer. In modern high-gravity fermentations, which are performed in tall cylindroconical vessels, the beer ester balance is often sub-optimal, resulting in a clear decrease in beer quality. Despite the intensive research aimed at unravelling the precise mechanism and regulation of ester synthesis, our current knowledge remains far from complete. However, a number of factors that influence flavor-active ester production have already been described, including wort composition, wort aeration and fermentor design. A thoughtful adaptation of these parameters allows brewers to steer ester concentrations and thus to control the fruity character of their beers. This paper reviews the current knowledge of the biochemistry behind yeast ester synthesis and discusses the different factors that allow ester formation to be controlled during brewery fermentation.


Applied and Environmental Microbiology | 2003

Expression Levels of the Yeast Alcohol Acetyltransferase Genes ATF1, Lg-ATF1, and ATF2 Control the Formation of a Broad Range of Volatile Esters

Kevin J. Verstrepen; Stijn D. M. Van Laere; Bart Vanderhaegen; Guy Derdelinckx; Jean-Pierre Dufour; Isak S. Pretorius; Joris Winderickx; Johan M. Thevelein; Freddy R. Delvaux

ABSTRACT Volatile aroma-active esters are responsible for the fruity character of fermented alcoholic beverages such as beer and wine. Esters are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction. In order to investigate and compare the roles of the known Saccharomyces cerevisiae alcohol acetyltransferases, Atf1p, Atf2p and Lg-Atf1p, in volatile ester production, the respective genes were either deleted or overexpressed in a laboratory strain and a commercial brewing strain. Subsequently, the ester formation of the transformants was monitored by headspace gas chromatography and gas chromatography combined with mass spectroscopy (GC-MS). Analysis of the fermentation products confirmed that the expression levels of ATF1 and ATF2 greatly affect the production of ethyl acetate and isoamyl acetate. GC-MS analysis revealed that Atf1p and Atf2p are also responsible for the formation of a broad range of less volatile esters, such as propyl acetate, isobutyl acetate, pentyl acetate, hexyl acetate, heptyl acetate, octyl acetate, and phenyl ethyl acetate. With respect to the esters analyzed in this study, Atf2p seemed to play only a minor role compared to Atf1p. The atf1Δ atf2Δ double deletion strain did not form any isoamyl acetate, showing that together, Atf1p and Atf2p are responsible for the total cellular isoamyl alcohol acetyltransferase activity. However, the double deletion strain still produced considerable amounts of certain other esters, such as ethyl acetate (50% of the wild-type strain), propyl acetate (50%), and isobutyl acetate (40%), which provides evidence for the existence of additional, as-yet-unknown ester synthases in the yeast proteome. Interestingly, overexpression of different alleles of ATF1 and ATF2 led to different ester production rates, indicating that differences in the aroma profiles of yeast strains may be partially due to mutations in their ATF genes.


Applied Microbiology and Biotechnology | 2003

Bioflavoring and beer refermentation

Bart Vanderhaegen; Hedwig Neven; Stefan Coghe; Kevin J. Verstrepen; Guy Derdelinckx; Hubert Verachtert

Various techniques are used to adjust the flavors of foods and beverages to new market demands. Although synthetic flavoring chemicals are still widely used, flavors produced by biological methods (bioflavors) are now more and more requested by consumers, increasingly concerned with health and environmental problems caused by synthetic chemicals. Bioflavors can be extracted from plants or produced with plant cell cultures, microorganisms or isolated enzymes. This Mini-Review paper gives an overview of different systems for the microbial production of natural flavors, either de novo, or starting with selected flavor precursor molecules. Emphasis is put on the bioflavoring of beer and the possibilities offered by beer refermentation processes. The use of flavor precursors in combination with non-conventional or genetically modified yeasts for the production of new products is discussed.


International Journal of Food Microbiology | 2015

Brettanomyces yeasts--From spoilage organisms to valuable contributors to industrial fermentations.

Jan Steensels; Luk Daenen; Philippe Malcorps; Guy Derdelinckx; Hubert Verachtert; Kevin J. Verstrepen

Ever since the introduction of controlled fermentation processes, alcoholic fermentations and Saccharomyces cerevisiae starter cultures proved to be a match made in heaven. The ability of S. cerevisiae to produce and withstand high ethanol concentrations, its pleasant flavour profile and the absence of health-threatening toxin production are only a few of the features that make it the ideal alcoholic fermentation organism. However, in certain conditions or for certain specific fermentation processes, the physiological boundaries of this species limit its applicability. Therefore, there is currently a strong interest in non-Saccharomyces (or non-conventional) yeasts with peculiar features able to replace or accompany S. cerevisiae in specific industrial fermentations. Brettanomyces (teleomorph: Dekkera), with Brettanomyces bruxellensis as the most commonly encountered representative, is such a yeast. Whilst currently mainly considered a spoilage organism responsible for off-flavour production in wine, cider or dairy products, an increasing number of authors report that in some cases, these yeasts can add beneficial (or at least interesting) aromas that increase the flavour complexity of fermented beverages, such as specialty beers. Moreover, its intriguing physiology, with its exceptional stress tolerance and peculiar carbon- and nitrogen metabolism, holds great potential for the production of bioethanol in continuous fermentors. This review summarizes the most notable metabolic features of Brettanomyces, briefly highlights recent insights in its genetic and genomic characteristics and discusses its applications in industrial fermentation processes, such as the production of beer, wine and bioethanol.


Fems Yeast Research | 2003

The Saccharomyces cerevisiae alcohol acetyl transferase gene ATF1 is a target of the cAMP/PKA and FGM nutrient-signalling pathways

Kevin J. Verstrepen; Guy Derdelinckx; Jean-Pierre Dufour; Joris Winderickx; Isak S. Pretorius; Johan M. Thevelein; Freddy R. Delvaux

The ATF1-encoded Saccharomyces cerevisiae yeast alcohol acetyl transferase I is responsible for the formation of several different volatile acetate esters during fermentations. A number of these volatile esters, e.g. ethyl acetate and isoamyl acetate, are amongst the most important aroma compounds in fermented beverages such as beer and wine. Manipulation of the expression levels of ATF1 in brewing yeast strains has a significant effect on the ester profile of beer. Northern blot analysis of ATF1 and its closely related homologue, Lg-ATF1, showed that these genes were rapidly induced by the addition of glucose to anaerobically grown carbon-starved cells. This induction was abolished in a protein kinase A (PKA)-attenuated strain, while a PKA-overactive strain showed stronger ATF1 expression, indicating that the Ras/cAMP/PKA signalling pathway is involved in this glucose induction. Furthermore, nitrogen was needed in the growth medium in order to maintain ATF1 expression. Long-term activation of ATF1 could also be obtained by the addition of the non-metabolisable amino acid homologue beta-L-alanine, showing that the effect of the nitrogen source did not depend on its metabolism. In addition to nutrient regulation, ATF1 and Lg-ATF1 expression levels were also affected by heat and ethanol stress. These findings help in the understanding of the effect of medium composition on volatile ester synthesis in industrial fermentations. In addition, the complex regulation provides new insights into the physiological role of Atf1p in yeast.


Yeast | 2004

The Saccharomyces cerevisiae alcohol acetyl transferase Atf1p is localized in lipid particles

Kevin J. Verstrepen; Stijn D. M. Van Laere; Jo Vercammen; Guy Derdelinckx; Jean-Pierre Dufour; Isak S. Pretorius; Joris Winderickx; Johan M. Thevelein; Freddy R. Delvaux

The yeast alcohol acetyl transferase I, Atf1p, is responsible for the major part of volatile acetate ester production in fermenting Saccharomyces cerevisiae cells. Some of these esters, such as ethyl acetate and isoamyl acetate, are important for the fruity flavours of wine, beer and other fermented beverages. In order to reveal the subcellular localization of Atf1p and further unravel the possible physiological role of this protein, ATF1::GFP fusion constructs were overexpressed in brewers yeast. The transformant strain showed a significant increase in acetate ester formation, similar to that of an ATF1 overexpression strain, indicating that the Atf1p–GFP fusion protein was active. UV fluorescence microscopy revealed that the fusion protein was localized in small, sphere‐like organelles. These organelles could be selectively stained by the fluorescent dye Nile red, indicating that they contained high amounts of neutral lipids and/or sterols, a specific characteristic of yeast lipid particles. Purification of lipid particles from wild type and ATF1 deletion cells confirmed that the Atf1p–GFP fusion protein was located in these organelles. Furthermore, a clear alcohol acetyl transferase activity could be measured in the purified lipid particles of both wild type and transformed cells. The localization of Atf1p in lipid particles may indicate that Atf1p has a specific role in the lipid and/or sterol metabolism that takes place in these particles. Copyright


Journal of Applied Microbiology | 2007

Screening and evaluation of the glucoside hydrolase activity in Saccharomyces and Brettanomyces brewing yeasts

Luk Daenen; Daan Saison; Femke L. Sterckx; Freddy R. Delvaux; Hubert Verachtert; Guy Derdelinckx

Aims:  The aim of this study was to select and examine Saccharomyces and Brettanomyces brewing yeasts for hydrolase activity towards glycosidically bound volatile compounds.


Meat Science | 2014

The occurrence of N-nitrosamines, residual nitrite and biogenic amines in commercial dry fermented sausages and evaluation of their occasional relation.

Eveline De Mey; Katrijn De Klerck; Hannelore De Maere; Lore Eveline Marieke Dewulf; Guy Derdelinckx; Marie-Christine Peeters; Ilse Fraeye; Yvan Vander Heyden; Hubert Paelinck

Regarding food borne intoxications, the accumulation of biogenic amines must be avoided in all kinds of food products. Moreover, biogenic amines can function as precursors for the formation of carcinogenic N-nitrosamines when nitrite is present. To estimate the food safety of the dry fermented sausages available on the Belgian market, a screening of the residual sodium nitrite and nitrate contents, biogenic amines and volatile N-nitrosamine concentrations was performed on 101 samples. The median concentrations of residual NaNO2 and NaNO3 were each individually lower than 20mg/kg. In general, the biogenic amine accumulation remained low at the end of shelf life. Only in one product the amounts of cadaverine and putrescine reached intoxicating levels. Concerning the occurrence of N-nitrosamines, only N-nitrosopiperidine and N-nitrosomorpholine were detected in a high number of samples (resp. 22% and 28%). No correlation between the presence of N-nitrosamines and the biogenic amines content was observed. Although the N-nitrosamines could not been linked to specific product categories, the occurrence of N-nitrosopiperidine could probably be attributed to the use of pepper.


Protein Journal | 2015

Recent Advances in Fungal Hydrophobin Towards Using in Industry

Mohammadreza Khalesi; Kurt Gebruers; Guy Derdelinckx

Fungal hydrophobin is a family of low molecular weight proteins consisting of four disulfide bridges and an extraordinary hydrophobic patch. The hydrophobic patch of hydrophobins and the molecules of gaseous CO2 may interact together and form the stable CO2-nanobubbles covered by an elastic membrane in carbonated beverages. The nanobubbles provide the required energy to provoke primary gushing. Due to the hydrophobicity of hydrophobin, this protein is used as a biosurfactant, foaming agent or encapsulating agent in food products and medicine formulations. Increasing demands for using of hydrophobins led to a challenge regarding production and purification of this product. However, the main issue to use hydrophobin in the industry is the regulatory affairs: yet there is no approved legislation for using hydrophobin in food and beverages. To comply with the legislation, establishing a consistent method for obtaining pure hydrophobins is necessary. Currently, few research teams in Europe are focusing on different aspects of hydrophobins. In this paper, an up-to-date collection of highlights from those special groups about the bio-chemical and physicochemical characteristics of hydrophobins have been studied. The recent advances of those groups concerning the production and purification, positive applications and negative function of hydrophobin are also summarised.

Collaboration


Dive into the Guy Derdelinckx's collaboration.

Top Co-Authors

Avatar

Hubert Verachtert

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Kurt Gebruers

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Sylvie Deckers

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Kevin J. Verstrepen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Mohammadreza Khalesi

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Freddy R. Delvaux

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Chris W. Michiels

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Zahra Shokribousjein

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Johan A. Martens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jan Delcour

Université catholique de Louvain

View shared research outputs
Researchain Logo
Decentralizing Knowledge