Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guy M. Bernard is active.

Publication


Featured researches published by Guy M. Bernard.


Journal of the American Chemical Society | 2010

Solid-State 115In and 31P NMR Studies of Triarylphosphine Indium Trihalide Adducts

Fu Chen; Guibin Ma; Guy M. Bernard; Ronald G. Cavell; Robert McDonald; Michael J. Ferguson; Roderick E. Wasylishen

Solid-state (115)In and (31)P NMR spectroscopy, relativistic density functional theory (DFT) calculations, and single-crystal X-ray diffraction were used to investigate a series of triarylphosphine indium(III) trihalide adducts, X(3)In(PR(3)) and X(3)In(PR(3))(2) (X = Cl, Br or I; PR(3) = triarylphosphine ligand). The electric field gradient tensors at indium as well as the indium and phosphorus magnetic shielding tensors and the direct and indirect (115)In-(31)P spin-spin coupling were characterized; for complexes possessing a C(3) symmetry axis, the anisotropy in the indirect spin-spin coupling, DeltaJ((115)In,(31)P), was also determined. The (115)In quadrupolar coupling constants, C(Q)((115)In), range from +/-1.25 +/- 0.10 to -166.0 +/- 2.0 MHz. For any given phosphine ligand, the indium nuclei are most shielded for X = I and least shielded for X = Cl, a trend also observed for other group-13 nuclei in M(III) complexes. This experimental trend, attributed to spin-orbit effects of the halogen ligands, is reproduced by the DFT calculations. The spans of the indium magnetic shielding tensors for these complexes, delta(11)-delta(33), range from 40 +/- 7 to 710 +/- 60 ppm; those determined for phosphorus range from 28 +/- 1.5 to 50 +/- 3 ppm. Values of (1)J((115)In,(31)P) range from 550 +/- 20 to 2500 +/- 20 Hz. For any given halide, the (1)J((115)In,(31)P) values generally increase with increasing basicity of the PR(3) ligand. Calculated values of (1)J((115)In,(31)P) and DeltaJ((115)In,(31)P) duplicate experimental trends and indicate that both the Fermi-contact and spin-dipolar Fermi-contact mechanisms make important contributions to the (1)J((115)In,(31)P) tensors.


Solid State Nuclear Magnetic Resonance | 2003

Cobalt-59 NMR and X-ray diffraction studies of hydrated and dehydrated (+/-)-tris(ethylenediamine) cobalt(III) chloride.

Takahiro Ueda; Guy M. Bernard; Robert McDonald; Roderick E. Wasylishen

Cobalt-59 NMR experiments have been carried out on single-crystal and polycrystalline (powder) samples of (+/-)-tris(ethylenediamine)cobalt(III) chloride trihydrate, (+/-)-[Co(en)(3)]Cl(3) x 3H(2)O, and of its dehydrate. In addition, the X-ray crystal structure of the dehydrated sample has been determined. X-ray diffraction measurements confirm a long-held assumption that dehydration has only minor effects on the structure of the [Co(en)(3)](3+) cation. Nevertheless, these small differences have a detectable effect on the 59Co nuclear magnetic resonance properties of these compounds; in particular, the nuclear quadrupole coupling constant, C(Q). Straightforward identification of the c-axis for large single crystals of (+/-)-[Co(en)(3)]Cl(3).3H(2)O and of its dehydrate allowed us to obtain single-crystal 59 Co NMR data by orienting the crystals in an MAS rotor. Data collected on single crystals and polycrystalline samples indicate that C(Q)=-3.05+/-0.05 and -2.80+/-0.05 MHz for the hydrated and dehydrated samples, respectively; the signs have been assigned on the basis of a point charge model. The chemical shift tensor principal components were also determined: for the hydrated sample, delta(perpendicular)=7281+/-2 ppm, delta(parallel)=7004+/-4 ppm and delta(iso)=7189 ppm; for the dehydrated sample, delta(perpendicular)=7288+/-2 ppm, delta(parallel)=7008+/-4 ppm and delta(iso)=7195 ppm. The electric field gradient and chemical shift tensors are axially symmetric, as required by crystal symmetry.


Scientific Reports | 2012

Tracking Stable Isotope Enrichment in Tree Seedlings with Solid-State NMR Spectroscopy

Charlotte E. Norris; Sylvie A. Quideau; Simon M. Landhäusser; Guy M. Bernard; Roderick E. Wasylishen

Enriching plant tissues with 13C and 15N isotopes has provided long-lasting, non-reactive tracers to quantify rates of terrestrial elemental fluxes (e.g., soil organic matter decomposition). However, the molecular location and level of isotope enrichment may differ among plant tissues. This factor is central to the integrity and interpretation of tracer data, but is seldom considered in experiments. We propose a rapid, non-destructive method to quantify molecular isotope allocation using solid-state 13C and 15N nuclear magnetic resonance spectroscopy. With this method, we tracked and quantified the fate of multiple pulses of 13CO2(g) and K 15NO3(l) in boreal tree seedling roots and leaves as a function of time. Results show that initial preferential 13C carbohydrate enrichment in the leaves was followed by redistribution to more complex compounds after seven days. While 13C allocation within the roots was uniform across molecules, 15N results indicate an initial enrichment of amine molecules after two hours.


Chemistry: A European Journal | 2013

An Investigation of 1:1 Adducts of Gallium Trihalides with Triarylphosphines by Solid‐State 69/71Ga and 31P NMR Spectroscopy

Fu Chen; Guibin Ma; Guy M. Bernard; Roderick E. Wasylishen; Ronald G. Cavell; Robert McDonald; Michael J. Ferguson

Several 1:1 adducts of gallium trihalides with triarylphosphines, X(3)Ga(PR(3)) (X=Cl, Br, and I; PR(3)=triarylphosphine ligand), were investigated by using solid-state (69/71)Ga and (31)P NMR spectroscopy at different magnetic-field strengths. The (69/71)Ga nuclear quadrupolar coupling parameters, as well as the gallium and phosphorus magnetic shielding tensors, were determined. The magnitude of the (71)Ga quadrupolar coupling constants (C(Q)((71)Ga)) range from approximately 0.9 to 11.0 MHz. The spans of the gallium magnetic shielding tensors for these complexes, δ(11)-δ(33), range from approximately 30 to 380 ppm; those determined for phosphorus range from 10 to 40 ppm. For any given phosphine ligand, the gallium nuclei are most shielded for X=I and least shielded for X=Cl, a trend previously observed for In(III)-phosphine complexes. This experimental trend, attributed to spin-orbit effects of the halogen ligands, is reproduced by DFT calculations. The signs of C(Q)((69/71)Ga) for some of the adducts were determined from the analysis of the (31)P NMR spectra acquired with magic angle spinning (MAS). The (1)J((69/71)Ga,(31)P) and ΔJ((69/71)Ga, (31)P) values, as well as their signs, were also determined; values of (1)J((71)Ga,(31)P) range from approximately 380 to 1590 Hz. Values of (1)J((69/71)Ga,(31)P) and ΔJ((69/71)Ga,(31)P) calculated by using DFT have comparable magnitudes and generally reproduce experimental trends. Both the Fermi-contact and spin-dipolar Fermi-contact mechanisms make important contributions to the (1)J((69/71)Ga,(31)P) tensors. The (31)P NMR spectra of several adducts in solution, obtained as a function of temperature, are contrasted with those obtained in the solid state. Finally, to complement the analysis of NMR spectra for these adducts, single-crystal X-ray diffraction data for Br(3)Ga[P(p-Anis)(3)] and I(3)Ga[P(p-Anis)(3)] were obtained.


Journal of Physical Chemistry A | 2018

Methylammonium Cation Dynamics in Methylammonium Lead Halide Perovskites–A Solid-State NMR Perspective

Guy M. Bernard; Roderick E. Wasylishen; Christopher I. Ratcliffe; Victor V. Terskikh; Qichao Wu; Jillian M. Buriak; Tate C. Hauger

In light of the intense recent interest in the methylammonium lead halides, CH3NH3PbX3 (X = Cl, Br, and I) as sensitizers for photovoltaic cells, the dynamics of the methylammonium (MA) cation in these perovskite salts has been reinvestigated as a function of temperature via 2H, 14N, and 207Pb NMR spectroscopy. In the cubic phase of all three salts, the MA cation undergoes pseudoisotropic tumbling (picosecond time scale). For example, the correlation time, τ2, for the C-N axis of the iodide salt is 0.85 ± 0.30 ps at 330 K. The dynamics of the MA cation are essentially continuous across the cubic ↔ tetragonal phase transition; however, 2H and 14N NMR line shapes indicate that subtle ordering of the MA cation occurs in the tetragonal phase. The temperature dependence of the cation ordering is rationalized using a six-site model, with two equivalent sites along the c-axis and four equivalent sites either perpendicular or approximately perpendicular to this axis. As the cubic ↔ tetragonal phase transition temperature is approached, the six sites are nearly equally populated. Below the tetragonal ↔ orthorhombic phase transition, 2H NMR line shapes indicate that the C-N axis is essentially frozen.


Journal of Physical Chemistry A | 2015

Solid-State 87Sr NMR Spectroscopy at Natural Abundance and High Magnetic Field Strength

Alexandra Faucher; Victor V. Terskikh; Eric Ye; Guy M. Bernard; Roderick E. Wasylishen

Twenty-five strontium-containing solids were characterized via (87)Sr NMR spectroscopy at natural abundance and high magnetic field strength (B0 = 21.14 T). Strontium nuclear quadrupole coupling constants in these compounds are sensitive to the strontium site symmetry and range from 0 to 50.5 MHz. An experimental (87)Sr chemical shift scale is proposed, and available data indicate a chemical shift range of approximately 550 ppm, from -200 to +350 ppm relative to Sr(2+)(aq). In general, magnetic shielding increased with strontium coordination number. Experimentally measured chemical shift anisotropy is reported for stationary samples of solid powdered SrCl2·6H2O, SrBr2·6H2O, and SrCO3, with δaniso((87)Sr) values of +28, +26, and -65 ppm, respectively. NMR parameters were calculated using CASTEP, a gauge including projector augmented wave (GIPAW) DFT-based program, which addresses the periodic nature of solids using plane-wave basis sets. Calculated NMR parameters are in good agreement with those measured.


Journal of Physical Chemistry A | 2014

Experimental characterization of the hydride 1H shielding tensors for HIrX2(PR3)2 and HRhCl2(PR3)2: extremely shielded hydride protons with unusually large magnetic shielding anisotropies.

Piotr Garbacz; Victor V. Terskikh; Michael J. Ferguson; Guy M. Bernard; Mariusz Kędziorek; Roderick E. Wasylishen

The hydride proton magnetic shielding tensors for a series of iridium(III) and rhodium(III) complexes are determined. Although it has long been known that hydridic protons for transition-metal hydrides are often extremely shielded, this is the first experimental determination of the shielding tensors for such complexes. Isolating the (1)H NMR signal for a hydride proton requires careful experimental strategies because the spectra are generally dominated by ligand (1)H signals. We show that this can be accomplished for complexes containing as many as 66 ligand protons by substituting the latter with deuterium and by using hyperbolic secant pulses to selectively irradiate the hydride proton signal. We also demonstrate that the quality of the results is improved by performing experiments at the highest practical magnetic field (21.14 T for the work presented here). The hydride protons for iridium hydride complexes HIrX2(PR3)2 (X = Cl, Br, or I; R = isopropyl, cyclohexyl) are highly shielded with isotropic chemical shifts of approximately -50 ppm and are also highly anisotropic, with spans (=δ11 - δ33) ranging from 85.1 to 110.7 ppm. The hydridic protons for related rhodium complexes HRhCl2(PR3)2 also have unusual magnetic shielding properties with chemical shifts and spans of approximately -32 and 85 ppm, respectively. Relativistic density functional theory computations were performed to determine the orientation of the principal components of the hydride proton shielding tensors and to provide insights into the origin of these highly anisotropic shielding tensors. The results of our computations agree well with experiment, and our conclusions concerning the importance of relativistic effects support those recently reported by Kaupp and co-workers.


Canadian Journal of Soil Science | 2014

Carbon and nitrogen in the silt-size fraction and its HCl-hydrolysis residues from coarse-textured Canadian boreal forest soils

Caroline M. Preston; Charlotte E. Norris; Guy M. Bernard; David W. Beilman; Sylvie A. Quideau; Roderick E. Wasylishen

Preston, C. M., Norris, C. E., Bernard, G. M., Beilman, D. W., Quideau, S. A. and Wasylishen, R. E. 2014. Carbon and nitrogen in the silt-size fraction and its HCl-hydrolysis residues from coarse-textured Canadian boreal forest soils. Can. J. Soil Sci. 94: 157-168. Improving the capacity to predict changes in soil carbon (C) stocks in the Canadian boreal forest requires better information on the characteristics and age of soil carbon, especially more slowly cycling C in mineral soil. We characterized C in the silt-size fraction, as representative of C stabilized by mineral association, previously isolated in a study of soil profiles of four sandy boreal jack pine sites. Silt-size fraction accounted for 13-31% of the total soil C and 12-51% of the total soil N content. Solid-state 13C nuclear magnetic resonance spectroscopy showed that silt C was mostly dominated by alkyl and O,N-alkyl C, with low proportions of aryl C in most samples. Thus, despite the importance of fire in this region, there was little evidence of storage of pyrogenic C. We used HCl hydrolysis to isolate the oldest C within the silt-size fraction. Consistent with previous studies, this procedure removed 21-74% of C and 74-93% of N, leaving residues composed mainly of alkyl and aryl C. However, it failed to isolate consistently old C; 11 out of 16 samples had recent 14C ages (fraction of modern 14C > 1), although C-horizon samples were older, with Δ14C from -17 to -476‰. Our results indicate relatively young ages for C associated with the silt-size fractions in these sites, for which mineral soil C storage may be primarily limited by good drainage and coarse soil texture, exacerbated by losses due to periodic wildfire.


Journal of Magnetic Resonance | 2017

Methylammonium lead chloride: A sensitive sample for an accurate NMR thermometer

Guy M. Bernard; Atul Goyal; Mark Miskolzie; Ryan T. McKay; Qichao Wu; Roderick E. Wasylishen; Vladimir K. Michaelis

A new solid-state nuclear magnetic resonance (NMR) thermometry sample is proposed. The 207Pb NMR chemical shift of a lead halide perovskite, methylammonium lead chloride (MAPbCl3) is very sensitive to temperature, 0.905±0.010ppmK-1. The response to temperature is linear over a wide temperature range, from its tetragonal to cubic phase transition at 178K to >410K, making it an ideal standard for temperature calibrations in this range. Because the 207Pb NMR lineshape for MAPbCl3 appears symmetric, the sample is ideal for calibration of variable temperature NMR data acquired for spinning or non-spinning samples. A frequency-ratio method is proposed for referencing 207Pb chemical shifts, based on the 1H and 13C frequencies of the methylammonium cation, which are used asan internal standard. Finally, this new NMR thermometer has been used to measure the degree of frictional heating asa function of spinning frequency for a series of MAS rotors ranging in outer diameter from 1.3 to 7.0mm. As expected, the largest diameter rotors are more susceptible to frictional heating, but lower diameter rotors are subjected to higher frictional heating temperatures as they are typically spun at much higher spinning frequencies.


Physical Chemistry Chemical Physics | 2008

Solid-state phosphorus-31 NMR spectroscopy of a multiple-spin system: an investigation of a rhodium–triphosphine complex

Guy M. Bernard; Kirk W. Feindel; Roderick E. Wasylishen; T. Stanley Cameron

Phosphorus-31 NMR spectra of solid [tris(dimethylphenylphosphine)](2,5-norbornadiene) rhodium(I) hexafluorophosphate have been acquired at several applied magnetic field strengths. The phosphorus nuclei of the three phosphine ligands are spin-spin coupled to each other and to 103Rh, resulting in complex NMR spectra; however, the three phosphorus chemical shift (CS) tensors were determined through the analysis of NMR spectra of slow magic angle spinning and stationary samples. Spectra of spinning samples in rotational resonance and two-dimensional 31P NMR spectra were particularly useful for determining the magnitudes of the indirect spin-spin couplings, and to probe their signs. Despite being in similar environments, the three phosphorus nuclei of the phosphine ligands have distinct CS tensors. In particular, the spans of these tensors, delta11-delta33, range from 80 to 176 ppm. The phosphorus CS tensors have been assigned to specific sites determined by X-ray crystallography, based on a combination of the experimental results and the results of quantum chemical calculations of the phosphorus shielding and 2J(31P,31P) values. The effect of coordination of dimethylphenylphosphine with rhodium has been investigated by comparing calculated phosphorus CS tensors for the uncoordinated ligand with those obtained for the ligands in the complex.

Collaboration


Dive into the Guy M. Bernard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge