Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guy Ungerechts is active.

Publication


Featured researches published by Guy Ungerechts.


Molecular Therapy | 2014

CTLA-4 and PD-L1 Checkpoint Blockade Enhances Oncolytic Measles Virus Therapy

Christine E. Engeland; Rūta Veinalde; Sascha Bossow; Diana Lutz; Johanna Kaufmann; Ivan Shevchenko; Viktor Umansky; Dirk M. Nettelbeck; Wilko Weichert; Dirk Jäger; Christof von Kalle; Guy Ungerechts

We hypothesized that the combination of oncolytic virotherapy with immune checkpoint modulators would reduce tumor burden by direct cell lysis and stimulate antitumor immunity. In this study, we have generated attenuated Measles virus (MV) vectors encoding antibodies against CTLA-4 and PD-L1 (MV-aCTLA-4 and MV-aPD-L1). We characterized the vectors in terms of growth kinetics, antibody expression, and cytotoxicity in vitro. Immunotherapeutic effects were assessed in a newly established, fully immunocompetent murine model of malignant melanoma, B16-CD20. Analyses of tumor-infiltrating lymphocytes and restimulation experiments indicated a favorable immune profile after MV-mediated checkpoint modulation. Therapeutic benefits in terms of delayed tumor progression and prolonged median overall survival were observed for animals treated with vectors encoding anti-CTLA-4 and anti-PD-L1, respectively. Combining systemic administration of antibodies with MV treatment also improved therapeutic outcome. In vivo oncolytic efficacy against human tumors was studied in melanoma xenografts. MV-aCTLA-4 and MV-aPD-L1 were equally efficient as parental MV in this model, with high rates of complete tumor remission (> 80%). Furthermore, we could demonstrate lysis of tumor cells and transgene expression in primary tissue from melanoma patients. The current results suggest rapid translation of combining immune checkpoint modulation with oncolytic viruses into clinical application.


Cancer Research | 2007

Lymphoma Chemovirotherapy: CD20-Targeted and Convertase-Armed Measles Virus Can Synergize with Fludarabine

Guy Ungerechts; Christoph Springfeld; Marie Frenzke; Johanna Lampe; Patrick B. Johnston; William B. Parker; Eric J. Sorscher; Roberto Cattaneo

Combination chemotherapy regimen incorporating CD20 antibodies are commonly used in the treatment of CD20-positive non-Hodgkins lymphoma (NHL). Fludarabine phosphate (F-araAMP), cyclophosphamide, and CD20 antibodies (Rituximab) constitute the FCR regimen for treating selected NHL, including aggressive mantle cell lymphoma (MCL). As an alternative to the CD20 antibody, we generated a CD20-targeted measles virus (MV)-based vector. This vector was also armed with the prodrug convertase purine nucleoside phosphorylase (PNP) that locally converts the active metabolite of F-araAMP to a highly diffusible substance capable of efficiently killing bystander cells. We showed in infected cells that early prodrug administration controls vector spread, whereas late administration enhances cell killing. Control of spread by early prodrug administration was also shown in an animal model: F-araAMP protected genetically modified mice susceptible to MV infection from a potentially lethal intracerebral challenge. Enhanced oncolytic potency after extensive infection was shown in a Burkitts lymphoma xenograft model (Raji cells): After systemic vector inoculation, prodrug administration enhanced the therapeutic effect synergistically. In a MCL xenograft model (Granta 519 cells), intratumoral (i.t.) vector administration alone had high oncolytic efficacy: All mice experienced complete but temporary tumor regression, and survival was two to four times longer than that of untreated mice. Cells from MCL patients were shown to be sensitive to infection. Thus, synergy of F-araAMP with a PNP-armed and CD20-targeted MV was shown in one lymphoma therapy model after systemic vector inoculation.


Cancer Research | 2006

Oncolytic Efficacy and Enhanced Safety of Measles Virus Activated by Tumor-Secreted Matrix Metalloproteinases

Christoph Springfeld; Veronika von Messling; Marie Frenzke; Guy Ungerechts; Christian J. Buchholz; Roberto Cattaneo

Cancer cells secrete matrix metalloproteinases (MMP) that degrade the extracellular matrix and are responsible for some hallmarks of malignant cancer. Many viruses, including a few currently used in oncolytic virotherapy clinical trials, depend on intracellular proteases to process their proteins and activate their particles. We show here for measles virus (MV) that particle activation can be made dependent of proteases secreted by cancer cells. The MV depends on the intracellular protease furin to process and activate its envelope fusion (F) protein. To make F protein activation cancer cell specific, we introduced hexameric sequences recognized by an MMP and identified the mutant proteins most effective in fusing MMP-expressing human fibrosarcoma cells (HT1080). We showed that an MMP inhibitor interferes with syncytia formation elicited by mutant F proteins and confirmed MMP-dependent cleavage by Edman degradation sequence analysis. We generated recombinant MVs expressing the modified F proteins in place of furin-activated F. These viruses spread only in cells secreting MMP. In nude mice, an MMP-activated MV retarded HT1080 xenograft growth as efficiently as the furin-activated MV vaccine strain. In MV-susceptible mice, the furin-activated virus caused lethal encephalitis upon intracerebral inoculation, whereas the MMP-activated did not. Thus, MV particle activation can be made dependent of proteases secreted by cancer cells, enhancing safety. This study opens the perspective of combining targeting at the particle activation, receptor recognition, and selective replication levels to improve the therapeutic index of MV and other viruses in ongoing clinical trials of oncolysis.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Artificial riboswitches for gene expression and replication control of DNA and RNA viruses

Patrick Ketzer; Johanna K. Kaufmann; Sarah Engelhardt; Sascha Bossow; Christof von Kalle; Jörg S. Hartig; Guy Ungerechts; Dirk M. Nettelbeck

Significance Riboswitches are short RNA sequences for ligand-dependent modulation of gene expression in cis. This study demonstrates that an artificial riboswitch, a ligand-dependent self-cleaving ribozyme (aptazyme), can knockdown expression of an adeno- (DNA) virus early and a measles (RNA) virus structural gene, impacting biological outcomes, i.e. inhibiting viral genome replication and infectivity, respectively. It is the first report of riboswitches for replication control of human-pathogenic viruses and of their function in fully cytoplasmic (virus) systems. For future applications, aptazymes can be customized in other viruses facilitating analyses of viral gene functions or as a safety switch in oncolytic viruses. Because of their small size and RNA-intrinsic activity, we propose aptazymes as an alternative for inducible promoters in eukaryotic gene expression control. Aptazymes are small, ligand-dependent self-cleaving ribozymes that function independently of transcription factors and can be customized for induction by various small molecules. Here, we introduce these artificial riboswitches for regulation of DNA and RNA viruses. We hypothesize that they represent universally applicable tools for studying viral gene functions and for applications as a safety switch for oncolytic and live vaccine viruses. Our study shows that the insertion of artificial aptazymes into the adenoviral immediate early gene E1A enables small-molecule–triggered, dose-dependent inhibition of gene expression. Aptazyme-mediated shutdown of E1A expression translates into inhibition of adenoviral genome replication, infectious particle production, and cytotoxicity/oncolysis. These results provide proof of concept for the aptazyme approach for effective control of biological outcomes in eukaryotic systems, specifically in virus infections. Importantly, we also demonstrate aptazyme-dependent regulation of measles virus fusion protein expression, translating into potent reduction of progeny infectivity and virus spread. This not only establishes functionality of aptazymes in fully cytoplasmic genetic systems, but also implicates general feasibility of this strategy for application in viruses with either DNA or RNA genomes. Our study implies that gene regulation by artificial riboswitches may be an appealing alternative to Tet- and other protein-dependent gene regulation systems, based on their small size, RNA-intrinsic mode of action, and flexibility of the inducing molecule. Future applications range from gene analysis in basic research to medicine, for example as a safety switch for new generations of efficiency-enhanced oncolytic viruses.


Molecular Therapy | 2011

Envelope-chimeric Entry-targeted Measles Virus Escapes Neutralization and Achieves Oncolysis

Tanner Miest; Koon Chu Yaiw; Marie Frenzke; Johanna Lampe; Andrew W. Hudacek; Christoph Springfeld; Veronika von Messling; Guy Ungerechts; Roberto Cattaneo

Measles virus (MV) is a promising vector for cancer therapy and multivalent vaccination, but high prevalence of pre-existing neutralizing antibodies may reduce therapeutic efficacy, particularly following systemic administration. MV has only one serotype, but here we show that its envelope glycoproteins can be exchanged with those of the closely related canine distemper virus (CDV), generating a chimeric virus capable of escaping neutralization. To target its entry, we displayed on the CDV attachment protein a single-chain antibody specific for a designated receptor. To enhance oncolytic efficacy we armed the virus with a prodrug convertase gene capable of locally activating chemotherapeutic prodrugs. The new virus achieved high titers, was genetically stable, and was resistant to neutralization by sera from both MV-immunized mice and MV-immune humans. The new virus targeted syngeneic murine tumor cells expressing the designated receptor implanted in immunocompetent mice, and synergized with a chemotherapeutic prodrug in a model of oncolysis. Importantly, the chimeric MV remained oncolytic when administered systemically even in the presence of anti-MV antibodies capable of abrogating the therapeutic efficacy of the parental, nonshielded MV. This work shows that targeting, arming, and shielding can be combined to generate a tumor-specific, neutralization-resistant virus that can synergize with chemotherapeutics.


Human Gene Therapy | 2013

Granulocyte-macrophage colony-stimulating factor-armed oncolytic measles virus is an effective therapeutic cancer vaccine.

Christine E. Engeland; Sascha Bossow; Niels Halama; Karim Zaoui; Mathias F. Leber; Christoph Springfeld; Dirk Jaeger; Christof von Kalle; Guy Ungerechts

Oncolytic measles viruses (MV) derived from the live attenuated vaccine strain have been engineered for increased antitumor activity, and are currently under investigation in clinical phase 1 trials. Approaches with other viral vectors have shown that insertion of immunomodulatory transgenes enhances the therapeutic potency. In this study, we engineered MV for expression of the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). For the first time, therapeutic efficacy and adaptive immune response in the context of MV oncolysis could be evaluated in the previously established immunocompetent murine colon adenocarcinoma model MC38cea. MC38cea cells express the human carcinoembryonic antigen (CEA), allowing for infection with retargeted MV. Intratumoral application of MV-GMCSF significantly delayed tumor progression and prolonged median overall survival compared with control virus-treated mice. Importantly, more than one-third of mice treated with MV-GMCSF showed complete tumor remission and rejected successive tumor reengraftment, demonstrating robust long-term protection. An enhanced cell-mediated tumor-specific immune response could be detected by lactate dehydrogenase assay and interferon-γ enzyme-linked immunospot assay. Furthermore, MV-GMCSF treatment correlated with increased abundance of tumor-infiltrating CD3(+) lymphocytes analyzed by quantitative microscopy of tumor sections. These findings underline the potential of oncolytic, GM-CSF-expressing MV as an effective therapeutic cancer vaccine actively recruiting adaptive immune responses for enhanced therapeutic impact and tumor elimination. Thus, the treatment benefit of this combined immunovirotherapy approach has direct implications for future clinical trials.


Cancer Gene Therapy | 2011

Armed and targeted measles virus for chemovirotherapy of pancreatic cancer.

Sascha Bossow; A. Temme; Mathias F. Leber; Stefanie Sawall; E. P. Rieber; Roberto Cattaneo; C. Von Kalle; Guy Ungerechts

No curative therapy is currently available for locally advanced or metastatic pancreatic cancer. Therefore, new therapeutic approaches must be considered. Measles virus (MV) vaccine strains have shown promising oncolytic activity against a variety of tumor entities. For specific therapy of pancreatic cancer, we generated a fully retargeted MV that enters cells exclusively through the prostate stem cell antigen (PSCA). Besides a high-membrane frequency on prostate cancer cells, this antigen is expressed on pancreatic adenocarcinoma, but not on non-neoplastic tissue. PSCA expression levels differ within heterogeneous tumor bulks and between human pancreatic cell lines, and we could show specific infection of pancreatic adenocarcinoma cell lines with both high- and low-level PSCA expression. Furthermore, we generated a fully retargeted and armed MV-PNP-anti-PSCA to express the prodrug convertase purine nucleoside phosphorylase (PNP). PNP, which activates the prodrug fludarabine effectively, enhanced the oncolytic efficacy of the virus on infected and bystander cells. Beneficial therapeutic effects were shown in a pancreatic cancer xenograft model. Moreover, in the treatment of gemcitabine-resistant pancreatic adenocarcinoma cells, no cross-resistance to both MV oncolysis and activated prodrug was detected.


Gene Therapy | 2010

Mantle cell lymphoma salvage regimen: synergy between a reprogrammed oncolytic virus and two chemotherapeutics

Guy Ungerechts; Marie Frenzke; Koon-Chu Yaiw; Tanner Miest; Patrick B. Johnston; Roberto Cattaneo

Measles virus (MV)-PNP HblindantiCD20 is a CD20-targeted and prodrug convertase-armed MV that temporarily controls growth of lymphoma xenografts in severe combined immunodeficiency (SCID) mice in combination with fludarabine phosphate (fludarabine). Herein, we examine the replication of this targeted virus and of a vaccine-lineage MV in disease bulks and circulating cells from mantle cell lymphoma (MCL) patients, and show that only the targeted virus is specific for CD20-expressing cells. We then assessed the efficacy of different regimens of administration of this virus in combination with fludarabine and cyclophosphamide (CPA) in an MCL xenograft model. We show that CPA administration before the beginning of virus treatment enhances oncolytic efficacy, likely through temporary immunosuppression. An interval of 1 week between intravenous virus administration and fludarabine treatment further enhanced oncolysis, by synchronizing maximum prodrug convertase expression with fludarabine availability. Finally, three 23-day courses of triple sequential treatment with CPA, virus and fludarabine treatment resulted in complete regression of the xenografts. Secondary disease symptoms interfered with survival, but average survival times increased from 22 to 77 days. These studies document a reprogrammed oncolytic virus, consolidating the effects of two chemotherapeutics, a concept well suited for a phase I clinical trial for MCL patients for whom conventional therapies have failed.


Cancer Gene Therapy | 2014

MicroRNA-mediated multi-tissue detargeting of oncolytic measles virus

M A Baertsch; Mathias F. Leber; Sascha Bossow; M Singh; Christine E. Engeland; J Albert; Dirk Jäger; C. Von Kalle; Guy Ungerechts

Precise oncotropism is required for successful systemic administration of next-generation oncolytic measles viruses (MVs). We have previously established a system for efficient post-entry targeting by insertion of synthetic microRNA target sites (miRTS) into the MV genome, thereby repressing replication in the presence of cognate microRNAs. Thus, differential expression of microRNAs, as frequently observed in normal compared with malignant tissues, can be exploited to increase vector specificity and safety. Here we report the combination of miRTS for different microRNAs in a single vector to detarget pivotal organs at risk during systemic administration (liver, brain, gastrointestinal tract). Accordingly, miRTS for miR-122, miR-7 and miR-148a that are enriched in these tissues were inserted to create multi-tissue-detargeted MV (MV-EGFPmtd). Replication of MV-EGFPmtd is repressed in cell lines as well as in non-transformed primary human hepatocytes and liver slices expressing cognate microRNAs. Oncolytic potency of MV-EGFPmtd is retained in a model of pancreatic cancer in vitro and in vivo. This work is a proof-of-concept that favorable expression profiles of multiple microRNAs can be exploited concomitantly to reshape the tropism of MV without compromising oncolytic efficacy. This strategy can be adapted to different vectors and cancer entities for safe and efficient high-dose systemic administration in clinical trials.


Cancer Gene Therapy | 2012

Chemovirotherapy for head and neck squamous cell carcinoma with EGFR-targeted and CD/UPRT-armed oncolytic measles virus

K. Zaoui; Sascha Bossow; Mathias F. Leber; Christoph Springfeld; P. K. Plinkert; C. Von Kalle; Guy Ungerechts

First-line treatment of recurrent and/or refractory head and neck squamous cell carcinoma (HNSCC) is based on platinum, 5-fluorouracil (5-FU) and the monoclonal antiEGFR antibody cetuximab. However, in most cases this chemoimmunotherapy does not cure the disease, and more than 50% of HNSCC patients are dying because of local recurrence of the tumors. In the majority of cases, HNSCC overexpress the epidermal growth factor receptor (EGFR), and its presence is associated with a poor outcome. In this study, we engineered an EGFR-targeted oncolytic measles virus (MV), armed with the bifunctional enzyme cytosine deaminase/uracil phosphoribosyltransferase (CD/UPRT). CD/UPRT converts 5-fluorocytosine (5-FC) into the chemotherapeutic 5-FU, a mainstay of HNSCC chemotherapy. This virus efficiently replicates in and lyses primary HNSCC cells in vitro. Arming with CD/UPRT mediates efficient prodrug activation with high bystander killing of non-infected tumor cells. In mice bearing primary HNSCC xenografts, intratumoral administration of MV-antiEGFR resulted in statistically significant tumor growth delay and prolongation of survival. Importantly, combination with 5-FC is superior to virus-only treatment leading to significant tumor growth inhibition. Thus, chemovirotherapy with EGFR-targeted and CD/UPRT-armed MV is highly efficacious in preclinical settings with direct translational implications for a planned Phase I clinical trial of MV for locoregional treatment of HNSCC.

Collaboration


Dive into the Guy Ungerechts's collaboration.

Top Co-Authors

Avatar

Christine E. Engeland

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Christoph Springfeld

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

Sascha Bossow

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christof von Kalle

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Dirk Jäger

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

Mathias F. Leber

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dirk M. Nettelbeck

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Rūta Veinalde

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge