Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie Frenzke is active.

Publication


Featured researches published by Marie Frenzke.


Nature | 2011

Adherens junction protein nectin-4 is the epithelial receptor for measles virus

Michael D. Mühlebach; Mathieu Mateo; Patrick L. Sinn; Steffen Prüfer; Katharina M. Uhlig; Vincent H. J. Leonard; Chanakha K. Navaratnarajah; Marie Frenzke; Xiao X. Wong; Bevan Sawatsky; Paul B. McCray; Klaus Cichutek; Veronika von Messling; Marc Lopez; Roberto Cattaneo

Measles virus is an aerosol-transmitted virus that affects more than 10 million children each year and accounts for approximately 120,000 deaths. Although it was long believed to replicate in the respiratory epithelium before disseminating, it was recently shown to infect initially macrophages and dendritic cells of the airways using signalling lymphocytic activation molecule family member 1 (SLAMF1; also called CD150) as a receptor. These cells then cross the respiratory epithelium and transport the infection to lymphatic organs where measles virus replicates vigorously. How and where the virus crosses back into the airways has remained unknown. On the basis of functional analyses of surface proteins preferentially expressed on virus-permissive human epithelial cell lines, here we identify nectin-4 (ref. 8; also called poliovirus-receptor-like-4 (PVRL4)) as a candidate host exit receptor. This adherens junction protein of the immunoglobulin superfamily interacts with the viral attachment protein with high affinity through its membrane-distal domain. Nectin-4 sustains measles virus entry and non-cytopathic lateral spread in well-differentiated primary human airway epithelial sheets infected basolaterally. It is downregulated in infected epithelial cells, including those of macaque tracheae. Although other viruses use receptors to enter hosts or transit through their epithelial barriers, we suggest that measles virus targets nectin-4 to emerge in the airways. Nectin-4 is a cellular marker of several types of cancer, which has implications for ongoing measles-virus-based clinical trials of oncolysis.


Journal of Virology | 2010

Measles Virus Infection of Alveolar Macrophages and Dendritic Cells Precedes Spread to Lymphatic Organs in Transgenic Mice Expressing Human Signaling Lymphocytic Activation Molecule (SLAM, CD150)

Claudia S. Antunes Ferreira; Marie Frenzke; Vincent H. J. Leonard; G. Grant Welstead; Christopher D. Richardson; Roberto Cattaneo

ABSTRACT Recent studies of primate models suggest that wild-type measles virus (MV) infects immune cells located in the airways before spreading systemically, but the identity of these cells is unknown. To identify cells supporting primary MV infection, we took advantage of mice expressing the MV receptor human signaling lymphocyte activation molecule (SLAM, CD150) with human-like tissue specificity. We infected these mice intranasally (IN) with a wild-type MV expressing green fluorescent protein. One, two, or three days after inoculation, nasal-associated lymphoid tissue (NALT), the lungs, several lymph nodes (LNs), the spleen, and the thymus were collected and analyzed by microscopy and flow cytometry, and virus isolation was attempted. One day after inoculation, MV replication was documented only in the airways, in about 2.5% of alveolar macrophages (AM) and 0.5% of dendritic cells (DC). These cells expressed human SLAM, and it was observed that MV infection temporarily enhanced SLAM expression. Later, MV infected other immune cell types, including B and T lymphocytes. Virus was isolated from lymphatic tissue as early as 2 days post-IN inoculation; the mediastinal lymph node was an early site of replication and supported high levels of infection. Three days after intraperitoneal inoculation, 1 to 8% of the mediastinal LN cells were infected. Thus, MV infection of alveolar macrophages and subepithelial dendritic cells in the airways precedes infection of lymphocytes in lymphatic organs of mice expressing human SLAM with human-like tissue specificity.


Cancer Research | 2007

Lymphoma Chemovirotherapy: CD20-Targeted and Convertase-Armed Measles Virus Can Synergize with Fludarabine

Guy Ungerechts; Christoph Springfeld; Marie Frenzke; Johanna Lampe; Patrick B. Johnston; William B. Parker; Eric J. Sorscher; Roberto Cattaneo

Combination chemotherapy regimen incorporating CD20 antibodies are commonly used in the treatment of CD20-positive non-Hodgkins lymphoma (NHL). Fludarabine phosphate (F-araAMP), cyclophosphamide, and CD20 antibodies (Rituximab) constitute the FCR regimen for treating selected NHL, including aggressive mantle cell lymphoma (MCL). As an alternative to the CD20 antibody, we generated a CD20-targeted measles virus (MV)-based vector. This vector was also armed with the prodrug convertase purine nucleoside phosphorylase (PNP) that locally converts the active metabolite of F-araAMP to a highly diffusible substance capable of efficiently killing bystander cells. We showed in infected cells that early prodrug administration controls vector spread, whereas late administration enhances cell killing. Control of spread by early prodrug administration was also shown in an animal model: F-araAMP protected genetically modified mice susceptible to MV infection from a potentially lethal intracerebral challenge. Enhanced oncolytic potency after extensive infection was shown in a Burkitts lymphoma xenograft model (Raji cells): After systemic vector inoculation, prodrug administration enhanced the therapeutic effect synergistically. In a MCL xenograft model (Granta 519 cells), intratumoral (i.t.) vector administration alone had high oncolytic efficacy: All mice experienced complete but temporary tumor regression, and survival was two to four times longer than that of untreated mice. Cells from MCL patients were shown to be sensitive to infection. Thus, synergy of F-araAMP with a PNP-armed and CD20-targeted MV was shown in one lymphoma therapy model after systemic vector inoculation.


Cancer Research | 2006

Oncolytic Efficacy and Enhanced Safety of Measles Virus Activated by Tumor-Secreted Matrix Metalloproteinases

Christoph Springfeld; Veronika von Messling; Marie Frenzke; Guy Ungerechts; Christian J. Buchholz; Roberto Cattaneo

Cancer cells secrete matrix metalloproteinases (MMP) that degrade the extracellular matrix and are responsible for some hallmarks of malignant cancer. Many viruses, including a few currently used in oncolytic virotherapy clinical trials, depend on intracellular proteases to process their proteins and activate their particles. We show here for measles virus (MV) that particle activation can be made dependent of proteases secreted by cancer cells. The MV depends on the intracellular protease furin to process and activate its envelope fusion (F) protein. To make F protein activation cancer cell specific, we introduced hexameric sequences recognized by an MMP and identified the mutant proteins most effective in fusing MMP-expressing human fibrosarcoma cells (HT1080). We showed that an MMP inhibitor interferes with syncytia formation elicited by mutant F proteins and confirmed MMP-dependent cleavage by Edman degradation sequence analysis. We generated recombinant MVs expressing the modified F proteins in place of furin-activated F. These viruses spread only in cells secreting MMP. In nude mice, an MMP-activated MV retarded HT1080 xenograft growth as efficiently as the furin-activated MV vaccine strain. In MV-susceptible mice, the furin-activated virus caused lethal encephalitis upon intracerebral inoculation, whereas the MMP-activated did not. Thus, MV particle activation can be made dependent of proteases secreted by cancer cells, enhancing safety. This study opens the perspective of combining targeting at the particle activation, receptor recognition, and selective replication levels to improve the therapeutic index of MV and other viruses in ongoing clinical trials of oncolysis.


Cancer Gene Therapy | 2005

Oncolytic activities of approved mumps and measles vaccines for therapy of ovarian cancer.

Rae Myers; Suzanne Greiner; Mary Harvey; Diane Soeffker; Marie Frenzke; Katalin Abraham; Alan Shaw; Shmuel Rozenblatt; Mark J. Federspiel; Stephen J. Russell; Kah Whye Peng

Oncolytic viruses are promising cytoreductive agents for cancer treatment but extensive human testing will be required before they are made commercially available. Here, we investigated the oncolytic potential of two commercially available live attenuated vaccines, Moraten measles and Jeryl-Lynn mumps, in a murine model of intraperitoneal human ovarian cancer and compared their efficacies against a recombinant oncolytic measles virus (MV-CEA) that is being tested in a phase I clinical trial. The common feature of these viruses is that they express hemagglutinin and fusion therapeutic proteins that can induce extensive fusion of the infected cell with its neighbors, resulting in death of the cell monolayer. In vitro, the three viruses caused intercellular fusion in human ovarian cancer cells but with marked differences in fusion kinetics. MV-CEA was the fastest followed by Jeryl-Lynn mumps virus while Moraten measles virus was the slowest, although all viruses eventually caused comparable cell death 6 days postinfection. Tumor-bearing mice treated with 106 or 107 pfu (one thousand times the vaccine dose) of each of the three viruses responded favorably to therapy with significant prolongations in survival. All three viruses demonstrated equivalent antitumor potency. Commercially available Moraten measles and Jeryl-Lynn mumps vaccines warrant further investigation as potential anticancer agents.


Molecular Therapy | 2011

Envelope-chimeric Entry-targeted Measles Virus Escapes Neutralization and Achieves Oncolysis

Tanner Miest; Koon Chu Yaiw; Marie Frenzke; Johanna Lampe; Andrew W. Hudacek; Christoph Springfeld; Veronika von Messling; Guy Ungerechts; Roberto Cattaneo

Measles virus (MV) is a promising vector for cancer therapy and multivalent vaccination, but high prevalence of pre-existing neutralizing antibodies may reduce therapeutic efficacy, particularly following systemic administration. MV has only one serotype, but here we show that its envelope glycoproteins can be exchanged with those of the closely related canine distemper virus (CDV), generating a chimeric virus capable of escaping neutralization. To target its entry, we displayed on the CDV attachment protein a single-chain antibody specific for a designated receptor. To enhance oncolytic efficacy we armed the virus with a prodrug convertase gene capable of locally activating chemotherapeutic prodrugs. The new virus achieved high titers, was genetically stable, and was resistant to neutralization by sera from both MV-immunized mice and MV-immune humans. The new virus targeted syngeneic murine tumor cells expressing the designated receptor implanted in immunocompetent mice, and synergized with a chemotherapeutic prodrug in a model of oncolysis. Importantly, the chimeric MV remained oncolytic when administered systemically even in the presence of anti-MV antibodies capable of abrogating the therapeutic efficacy of the parental, nonshielded MV. This work shows that targeting, arming, and shielding can be combined to generate a tumor-specific, neutralization-resistant virus that can synergize with chemotherapeutics.


Gene Therapy | 2010

Mantle cell lymphoma salvage regimen: synergy between a reprogrammed oncolytic virus and two chemotherapeutics

Guy Ungerechts; Marie Frenzke; Koon-Chu Yaiw; Tanner Miest; Patrick B. Johnston; Roberto Cattaneo

Measles virus (MV)-PNP HblindantiCD20 is a CD20-targeted and prodrug convertase-armed MV that temporarily controls growth of lymphoma xenografts in severe combined immunodeficiency (SCID) mice in combination with fludarabine phosphate (fludarabine). Herein, we examine the replication of this targeted virus and of a vaccine-lineage MV in disease bulks and circulating cells from mantle cell lymphoma (MCL) patients, and show that only the targeted virus is specific for CD20-expressing cells. We then assessed the efficacy of different regimens of administration of this virus in combination with fludarabine and cyclophosphamide (CPA) in an MCL xenograft model. We show that CPA administration before the beginning of virus treatment enhances oncolytic efficacy, likely through temporary immunosuppression. An interval of 1 week between intravenous virus administration and fludarabine treatment further enhanced oncolysis, by synchronizing maximum prodrug convertase expression with fludarabine availability. Finally, three 23-day courses of triple sequential treatment with CPA, virus and fludarabine treatment resulted in complete regression of the xenografts. Secondary disease symptoms interfered with survival, but average survival times increased from 22 to 77 days. These studies document a reprogrammed oncolytic virus, consolidating the effects of two chemotherapeutics, a concept well suited for a phase I clinical trial for MCL patients for whom conventional therapies have failed.


Journal of Virology | 2012

Broadly Neutralizing Immune Responses against Hepatitis C Virus Induced by Vectored Measles Viruses and a Recombinant Envelope Protein Booster

Jorge Reyes-del Valle; Cynthia de la Fuente; Mallory A. Turner; Christoph Springfeld; Swapna Apte-Sengupta; Marie Frenzke; Amelie Forest; Jillian Whidby; Joseph Marcotrigiano; Charles M. Rice; Roberto Cattaneo

ABSTRACT Hepatitis C virus (HCV) infection remains a serious public health problem worldwide. Treatments are limited, and no preventive vaccine is available. Toward developing an HCV vaccine, we engineered two recombinant measles viruses (MVs) expressing structural proteins from the prototypic HCV subtype 1a strain H77. One virus directs the synthesis of the HCV capsid (C) protein and envelope glycoproteins (E1 and E2), which fold properly and form a heterodimer. The other virus expresses the E1 and E2 glycoproteins separately, with each one fused to the cytoplasmic tail of the MV fusion protein. Although these hybrid glycoproteins were transported to the plasma membrane, they were not incorporated into MV particles. Immunization of MV-susceptible, genetically modified mice with either vector induced neutralizing antibodies to MV and HCV. A boost with soluble E2 protein enhanced titers of neutralizing antibody against the homologous HCV envelope. In animals primed with MV expressing properly folded HCV C-E1-E2, boosting also induced cross-neutralizating antibodies against two heterologous HCV strains. These results show that recombinant MVs retain the ability to induce MV-specific humoral immunity while also eliciting HCV neutralizing antibodies, and that anti-HCV immunity can be boosted with a single dose of purified E2 protein. The use of MV vectors could have advantages for pediatric HCV vaccination.


Journal of Virology | 2013

Nectin-4 dependent measles virus spread to the cynomolgus monkey tracheal epithelium: role of infected immune cells infiltrating the lamina propria

Marie Frenzke; Bevan Sawatsky; Xiao Xiang Wong; Sebastien Delpeut; Mathieu Mateo; Roberto Cattaneo; Veronika von Messling

ABSTRACT After the contagion measles virus (MV) crosses the respiratory epithelium within myeloid cells that express the primary receptor signaling lymphocytic activation molecule (SLAM), it replicates briskly in SLAM-expressing cells in lymphatic organs. Later, the infection spreads to epithelia expressing nectin-4, an adherens junction protein expressed preferentially in the trachea, but how it gets there is not understood. To characterize the mechanisms of spread, we infected groups of 5 or 6 cynomolgus monkeys (Macaca fascicularis) with either a wild-type MV or its “N4-blind” derivative, which is unable to enter nectin-4-expressing cells because of the targeted mutation of two hemagglutinin residues. As expected, both viruses caused similar levels of immunosuppression, as monitored by reductions in white blood cell counts and lymphocyte proliferation activity. However, monkeys infected with the N4-blind MV cleared infection more rapidly. Wild-type virus-infected monkeys secreted virus, while marginal virus titers were detected in tracheal lavage fluid cells of N4-blind MV-infected hosts. Analyses of tracheal rings obtained at necropsy (day 12) documented widespread infection of individual cells or small cell clusters in the subepithelial lamina propria of monkeys infected with either virus. However, only wild-type MV spread to the epithelium, forming numerous infectious centers comprised of many contiguous columnar cells. Infected CD11c+ myeloid (macrophage or dendritic) cells were frequently observed in the lamina propria below epithelial infectious centers. Thus, MV may use myeloid cells as vehicles not only immediately after contagion but also to infect epithelia of tissues expressing nectin-4, including the trachea.


Molecular Therapy | 2013

Measles Virus Entry Through the Signaling Lymphocyte Activation Molecule Governs Efficacy of Mantle Cell Lymphoma Radiovirotherapy

Tanner Miest; Marie Frenzke; Roberto Cattaneo

We developed here a vaccine-identical measles virus (MV) as an oncolytic agent against mantle cell lymphoma (MCL), an aggressive B-cell non-Hodgkins lymphoma that is difficult to cure but radiosensitive. We armed the virus with the sodium-iodide symporter, which concentrates iodide within infected cells enabling noninvasive imaging and combination radiovirotherapy. Through high-resolution in vivo and ex vivo imaging, we visualized the spread of infections in primary and metastatic tumors for over 2 weeks after therapy, documenting homogeneous virus seeding and spread restricted to perfused tissue. Infection of metastases was more rapid and intense than primary tumors, achieving isotope uptake within about threefold the efficiency of the thyroid. Virotherapy combined with systemic (131)I resulted in more rapid disease regression than either therapy alone. In addition to ubiquitous CD46, vaccine MV retains cell entry through its immune cell-specific receptor signaling lymphocytic activation molecule (SLAM). We asked whether both receptors could sustain effective oncolysis of MCL. Strikingly, only SLAM-dependent entry sustained efficient viral spread, tumor regression, and prolonged survival. These observations shift the focus of future clinical trials to SLAM-expressing hematologic malignancies and suggest that oncolytic vectors may depend on tissue-specific receptors for both cell entry and activation of responses assisting their replication.

Collaboration


Dive into the Marie Frenzke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy Ungerechts

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Springfeld

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge