Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gwen Falony is active.

Publication


Featured researches published by Gwen Falony.


Nature | 2012

A metagenome-wide association study of gut microbiota in type 2 diabetes

Junjie Qin; Yingrui Li; Zhiming Cai; Shenghui Li; Jianfeng Zhu; Fan Zhang; Suisha Liang; Wenwei Zhang; Yuanlin Guan; Dongqian Shen; Yangqing Peng; Dongya Zhang; Zhuye Jie; Wenxian Wu; Youwen Qin; Wenbin Xue; Junhua Li; Lingchuan Han; Donghui Lu; Peixian Wu; Yali Dai; Xiaojuan Sun; Zesong Li; Aifa Tang; Shilong Zhong; Xiaoping Li; Weineng Chen; Ran Xu; Mingbang Wang; Qiang Feng

Assessment and characterization of gut microbiota has become a major research area in human disease, including type 2 diabetes, the most prevalent endocrine disease worldwide. To carry out analysis on gut microbial content in patients with type 2 diabetes, we developed a protocol for a metagenome-wide association study (MGWAS) and undertook a two-stage MGWAS based on deep shotgun sequencing of the gut microbial DNA from 345 Chinese individuals. We identified and validated approximately 60,000 type-2-diabetes-associated markers and established the concept of a metagenomic linkage group, enabling taxonomic species-level analyses. MGWAS analysis showed that patients with type 2 diabetes were characterized by a moderate degree of gut microbial dysbiosis, a decrease in the abundance of some universal butyrate-producing bacteria and an increase in various opportunistic pathogens, as well as an enrichment of other microbial functions conferring sulphate reduction and oxidative stress resistance. An analysis of 23 additional individuals demonstrated that these gut microbial markers might be useful for classifying type 2 diabetes.


Nature | 2013

Richness of human gut microbiome correlates with metabolic markers

Trine Nielsen; Junjie Qin; Edi Prifti; Falk Hildebrand; Gwen Falony; Mathieu Almeida; Manimozhiyan Arumugam; Jean-Michel Batto; Sean Kennedy; Pierre Leonard; Junhua Li; Kristoffer Sølvsten Burgdorf; Niels Grarup; Torben Jørgensen; Ivan Brandslund; Henrik Bjørn Nielsen; Agnieszka Sierakowska Juncker; Marcelo Bertalan; Florence Levenez; Nicolas Pons; Simon Rasmussen; Shinichi Sunagawa; Julien Tap; Sebastian Tims; Erwin G. Zoetendal; Søren Brunak; Karine Clément; Joël Doré; Michiel Kleerebezem; Karsten Kristiansen

We are facing a global metabolic health crisis provoked by an obesity epidemic. Here we report the human gut microbial composition in a population sample of 123 non-obese and 169 obese Danish individuals. We find two groups of individuals that differ by the number of gut microbial genes and thus gut bacterial richness. They contain known and previously unknown bacterial species at different proportions; individuals with a low bacterial richness (23% of the population) are characterized by more marked overall adiposity, insulin resistance and dyslipidaemia and a more pronounced inflammatory phenotype when compared with high bacterial richness individuals. The obese individuals among the lower bacterial richness group also gain more weight over time. Only a few bacterial species are sufficient to distinguish between individuals with high and low bacterial richness, and even between lean and obese participants. Our classifications based on variation in the gut microbiome identify subsets of individuals in the general white adult population who may be at increased risk of progressing to adiposity-associated co-morbidities.


Science | 2016

Population-level analysis of gut microbiome variation

Gwen Falony; Marie Joossens; Sara Vieira-Silva; Jun Wang; Youssef Darzi; Karoline Faust; Alexander Kurilshikov; Marc Jan Bonder; Mireia Valles-Colomer; Doris Vandeputte; Raul Y. Tito; Samuel Chaffron; Leen Rymenans; Chloë Verspecht; Lise De Sutter; Gipsi Lima-Mendez; Kevin D’hoe; Karl Jonckheere; Daniel Homola; Roberto Garcia; Ettje F. Tigchelaar; Linda Eeckhaudt; Jingyuan Fu; Liesbet Henckaerts; Alexandra Zhernakova; Cisca Wijmenga; Jeroen Raes

“Normal” for the gut microbiota For the benefit of future clinical studies, it is critical to establish what constitutes a “normal” gut microbiome, if it exists at all. Through fecal samples and questionnaires, Falony et al. and Zhernakova et al. targeted general populations in Belgium and the Netherlands, respectively. Gut microbiota composition correlated with a range of factors including diet, use of medication, red blood cell counts, fecal chromogranin A, and stool consistency. The data give some hints for possible biomarkers of normal gut communities. Science, this issue pp. 560 and 565 Two large-scale studies in Western Europe establish environment-diet-microbe-host interactions. Fecal microbiome variation in the average, healthy population has remained under-investigated. Here, we analyzed two independent, extensively phenotyped cohorts: the Belgian Flemish Gut Flora Project (FGFP; discovery cohort; N = 1106) and the Dutch LifeLines-DEEP study (LLDeep; replication; N = 1135). Integration with global data sets (N combined = 3948) revealed a 14-genera core microbiota, but the 664 identified genera still underexplore total gut diversity. Sixty-nine clinical and questionnaire-based covariates were found associated to microbiota compositional variation with a 92% replication rate. Stool consistency showed the largest effect size, whereas medication explained largest total variance and interacted with other covariate-microbiota associations. Early-life events such as birth mode were not reflected in adult microbiota composition. Finally, we found that proposed disease marker genera associated to host covariates, urging inclusion of the latter in study design.


Science | 2016

Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity.

Alexandra Zhernakova; Alexander Kurilshikov; Marc Jan Bonder; Ettje F. Tigchelaar; Melanie Schirmer; Tommi Vatanen; Zlatan Mujagic; Arnau Vich Vila; Gwen Falony; Sara Vieira-Silva; Jun Wang; Floris Imhann; Eelke Brandsma; Soesma A. Jankipersadsing; Marie Joossens; Maria Carmen Cenit; Patrick Deelen; Morris A. Swertz; Rinse K. Weersma; Edith J. M. Feskens; Mihai G. Netea; Dirk Gevers; Daisy Jonkers; Lude Franke; Yurii S. Aulchenko; Curtis Huttenhower; Jeroen Raes; Marten H. Hofker; Ramnik J. Xavier; Cisca Wijmenga

“Normal” for the gut microbiota For the benefit of future clinical studies, it is critical to establish what constitutes a “normal” gut microbiome, if it exists at all. Through fecal samples and questionnaires, Falony et al. and Zhernakova et al. targeted general populations in Belgium and the Netherlands, respectively. Gut microbiota composition correlated with a range of factors including diet, use of medication, red blood cell counts, fecal chromogranin A, and stool consistency. The data give some hints for possible biomarkers of normal gut communities. Science, this issue pp. 560 and 565 Two large-scale studies in Western Europe establish environment-diet-microbe-host interactions. Deep sequencing of the gut microbiomes of 1135 participants from a Dutch population-based cohort shows relations between the microbiome and 126 exogenous and intrinsic host factors, including 31 intrinsic factors, 12 diseases, 19 drug groups, 4 smoking categories, and 60 dietary factors. These factors collectively explain 18.7% of the variation seen in the interindividual distance of microbial composition. We could associate 110 factors to 125 species and observed that fecal chromogranin A (CgA), a protein secreted by enteroendocrine cells, was exclusively associated with 61 microbial species whose abundance collectively accounted for 53% of microbial composition. Low CgA concentrations were seen in individuals with a more diverse microbiome. These results are an important step toward a better understanding of environment-diet-microbe-host interactions.


Nature | 2016

Human gut microbes impact host serum metabolome and insulin sensitivity

Helle Krogh Pedersen; Valborg Gudmundsdottir; Henrik Bjørn Nielsen; Tuulia Hyötyläinen; Trine Nielsen; Benjamin Anderschou Holbech Jensen; Kristoffer Forslund; Falk Hildebrand; Edi Prifti; Gwen Falony; Florence Levenez; Joël Doré; Ismo Mattila; Damian Rafal Plichta; Päivi Pöhö; Lars Hellgren; Manimozhiyan Arumugam; Shinichi Sunagawa; Sara Vieira-Silva; Torben Jørgensen; Jacob Holm; Kajetan Trošt; Karsten Kristiansen; Susanne Brix; Jeroen Raes; Jun Wang; Torben Hansen; Peer Bork; Søren Brunak; Matej Orešič

Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus are identified as the main species driving the association between biosynthesis of BCAAs and insulin resistance, and in mice we demonstrate that P. copri can induce insulin resistance, aggravate glucose intolerance and augment circulating levels of BCAAs. Our findings suggest that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders.


Applied and Environmental Microbiology | 2006

Cross-Feeding between Bifidobacterium longum BB536 and Acetate-Converting, Butyrate-Producing Colon Bacteria during Growth on Oligofructose

Gwen Falony; Angeliki Vlachou; Kristof Verbrugghe; Luc De Vuyst

ABSTRACT In vitro coculture fermentations of Bifidobacterium longum BB536 and two acetate-converting, butyrate-producing colon bacteria, Anaerostipes caccae DSM 14662 and Roseburia intestinalis DSM 14610, with oligofructose as the sole energy source, were performed to study interspecies interactions. Two clearly distinct types of cross-feeding were identified. A. caccae DSM 14662 was not able to degrade oligofructose but could grow on the fructose released by B. longum BB536 during oligofructose breakdown. R. intestinalis DSM 14610 could degrade oligofructose, but only after acetate was added to the medium. Detailed kinetic analyses of oligofructose breakdown by the last strain revealed simultaneous degradation of the different chain length fractions, in contrast with the preferential degradation of shorter fractions by B. longum BB536. In a coculture of both strains, initial oligofructose degradation and acetate production by B. longum BB536 took place, which in turn also allowed oligofructose breakdown by R. intestinalis DSM 14610. These and similar cross-feeding mechanisms could play a role in the colon ecosystem and contribute to the combined bifidogenic/butyrogenic effect observed after addition of inulin-type fructans to the diet.


Gut | 2016

Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates

Doris Vandeputte; Gwen Falony; Sara Vieira-Silva; Raul Y. Tito; Marie Joossens; Jeroen Raes

Objective The assessment of potentially confounding factors affecting colon microbiota composition is essential to the identification of robust microbiome based disease markers. Here, we investigate the link between gut microbiota variation and stool consistency using Bristol Stool Scale classification, which reflects faecal water content and activity, and is considered a proxy for intestinal colon transit time. Design Through 16S rDNA Illumina profiling of faecal samples of 53 healthy women, we evaluated associations between microbiome richness, Bacteroidetes:Firmicutes ratio, enterotypes, and genus abundance with self-reported, Bristol Stool Scale-based stool consistency. Each sample’s microbiota growth potential was calculated to test whether transit time acts as a selective force on gut bacterial growth rates. Results Stool consistency strongly correlates with all known major microbiome markers. It is negatively correlated with species richness, positively associated to the Bacteroidetes:Firmicutes ratio, and linked to Akkermansia and Methanobrevibacter abundance. Enterotypes are distinctly distributed over the BSS-scores. Based on the correlations between microbiota growth potential and stool consistency scores within both enterotypes, we hypothesise that accelerated transit contributes to colon ecosystem differentiation. While shorter transit times can be linked to increased abundance of fast growing species in Ruminococcaceae-Bacteroides samples, hinting to a washout avoidance strategy of faster replication, this trend is absent in Prevotella-enterotyped individuals. Within this enterotype adherence to host tissue therefore appears to be a more likely bacterial strategy to cope with washout. Conclusions The strength of the associations between stool consistency and species richness, enterotypes and community composition emphasises the crucial importance of stool consistency assessment in gut metagenome-wide association studies.


Meat Science | 2008

Probiotics in fermented sausages

Luc De Vuyst; Gwen Falony; Frédéric Leroy

Probiotic foods receive market interest as health-promoting, functional foods. They have been introduced in a wide range of food industries. However, commercial application of probiotic microorganisms in fermented sausages is not common yet. There are both advantages and disadvantages connected to fermented meat matrices. They are adequate for the carriage of probiotic bacteria since they are usually not or only mildly heated and may promote the survival of probiotic bacteria in the gastrointestinal tract. In contrast, bacterial viability may be reduced due to the high content in curing salt and the low water activity and pH. Therefore, results are expected to be strain-dependent. Up till now, several approaches have been followed but most results are too preliminary to be able to evaluate the effect of probiotic fermented meats on human health. Candidate probiotic strains have been obtained through screening for technological requirements among bacteria that are naturally present in the meat or that originate from meat starter cultures. Alternatively, existing probiotic bacteria have been applied in meat products. Finally, the evaluation of the end-products needs to deal with both health effects and technological characteristics, for instance through human intervention studies and taste panels, respectively.


Gut | 2016

Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD

João Sabino; Sara Vieira-Silva; Kathleen Machiels; Marie Joossens; Gwen Falony; Vera Ballet; Marc Ferrante; Gert Van Assche; Schalk Van der Merwe; Severine Vermeire; Jeroen Raes

Objective Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease often leading to end-stage liver disease. Its pathogenesis remains largely unknown, although frequent concomitant IBD hints towards common factors underlying gut and bile duct inflammation. Considering the mounting evidence on the involvement of the intestinal microbiota in initiating and determining IBD phenotype, we investigated intestinal microbiota composition in patients with PSC. Design Stool samples were collected from 147 individuals (52 patients with PSC, 52 age, gender and body mass index-matched healthy volunteers, 13 UC and 30 patients with Crohns disease). An independent validation cohort of 14 PSC and 14 matched controls was recruited. 16S rDNA sequencing of faecal DNA was performed (Illumina MiSeq). Results The microbiota of patients with PSC was characterised by decreased microbiota diversity, and a significant overrepresentation of Enterococcus (p=3.76e-05), Fusobacterium (p=3.76e-05) and Lactobacillus (p=0.0002) genera. This dysbiosis was present in patients with PSC with and without concomitant IBD and was distinct from IBD, and independent of treatment with ursodeoxycholic acid. A decision tree based on abundances of these three genera allowed reliable classification in the validation cohort. In particular, one operational taxonomic unit belonging to the Enterococcus genus was associated with increased levels of serum alkaline phosphatase (p=0.048), a marker of disease severity. Conclusions We here present the first report of PSC-associated faecal dysbiosis, independent from IBD signatures, suggesting the intestinal microbiota could be a contributing factor in PSC pathogenesis. Further studies are needed to confirm these findings and assess causality.


Applied and Environmental Microbiology | 2009

In Vitro Kinetic Analysis of Fermentation of Prebiotic Inulin-Type Fructans by Bifidobacterium Species Reveals Four Different Phenotypes

Gwen Falony; Katerina Lazidou; An Verschaeren; Stefan Weckx; Dominique Maes; Luc De Vuyst

ABSTRACT Kinetic analyses of bacterial growth, carbohydrate consumption, and metabolite production of 18 Bifidobacterium strains grown on fructose, oligofructose, or inulin were performed. A principal component analysis of the data sets, expanded with the results of a genetic screen concerning the presence of a β-fructofuranosidase gene previously encountered in Bifidobacterium animalis subsp. lactis DSM 10140T, revealed the existence of four clusters among the bifidobacteria tested. Strains belonging to a first cluster could not degrade oligofructose or inulin. Strains in a second cluster could degrade oligofructose, displaying a preferential breakdown mechanism, but did not grow on inulin. Fructose consumption was faster than oligofructose degradation. A third cluster was composed of strains that degraded all oligofructose fractions simultaneously and could partially break down inulin. Oligofructose degradation was substantially faster than fructose consumption. A fourth, smaller cluster consisted of strains that shared high fructose consumption and oligofructose degradation rates and were able to perform partial breakdown of inulin. For all strains, a metabolic shift toward more acetate, formate, and ethanol production, at the expense of lactate production, was observed during growth on less readily fermentable energy sources. No correlation between breakdown patterns and the presence of the β-fructofuranosidase gene could be detected. These variations indicate niche-specific adaptation of bifidobacteria and could have in vivo implications on the strain specificity of the stimulatory effect of inulin-type fructans on bifidobacteria.

Collaboration


Dive into the Gwen Falony's collaboration.

Top Co-Authors

Avatar

Jeroen Raes

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Sara Vieira-Silva

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Marie Joossens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Luc De Vuyst

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

João Sabino

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Marc Ferrante

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Severine Vermeire

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Kathleen Machiels

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Doris Vandeputte

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Gert Van Assche

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge