Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeroen Raes is active.

Publication


Featured researches published by Jeroen Raes.


Plant Physiology | 2003

Genome-Wide Characterization of the Lignification Toolbox in Arabidopsis

Jeroen Raes; Antje Rohde; Jørgen Holst Christensen; Yves Van de Peer; Wout Boerjan

Lignin, one of the most abundant terrestrial biopolymers, is indispensable for plant structure and defense. With the availability of the full genome sequence, large collections of insertion mutants, and functional genomics tools, Arabidopsis constitutes an excellent model system to profoundly unravel the monolignol biosynthetic pathway. In a genome-wide bioinformatics survey of the Arabidopsis genome, 34 candidate genes were annotated that encode genes homologous to the 10 presently known enzymes of the monolignol biosynthesis pathway, nine of which have not been described before. By combining evolutionary analysis of these 10 gene families with in silico promoter analysis and expression data (from a reverse transcription-polymerase chain reaction analysis on an extensive tissue panel, mining of expressed sequence tags from publicly available resources, and assembling expression data from literature), 12 genes could be pinpointed as the most likely candidates for a role in vascular lignification. Furthermore, a possible novel link was detected between the presence of the AC regulatory promoter element and the biosynthesis of G lignin during vascular development. Together, these data describe the full complement of monolignol biosynthesis genes in Arabidopsis, provide a unified nomenclature, and serve as a basis for further functional studies.


The Plant Cell | 2002

Genome-Wide Analysis of Core Cell Cycle Genes in Arabidopsis

Klaas Vandepoele; Jeroen Raes; Lieven De Veylder; Pierre Rouzé; Stephane Rombauts; Dirk Inzé

Cyclin-dependent kinases and cyclins regulate with the help of different interacting proteins the progression through the eukaryotic cell cycle. A high-quality, homology-based annotation protocol was applied to determine the core cell cycle genes in the recently completed Arabidopsis genome sequence. In total, 61 genes were identified belonging to seven selected families of cell cycle regulators, for which 30 are new or corrections of the existing annotation. A new class of putative cell cycle regulators was found that probably are competitors of E2F/DP transcription factors, which mediate the G1-to-S progression. In addition, the existing nomenclature for cell cycle genes of Arabidopsis was updated, and the physical positions of all genes were compared with segmentally duplicated blocks in the genome, showing that 22 core cell cycle genes emerged through block duplications. This genome-wide analysis illustrates the complexity of the plant cell cycle machinery and provides a tool for elucidating the function of new family members in the future.


Genome Biology | 2006

Nonrandom divergence of gene expression following gene and genome duplications in the flowering plant Arabidopsis thaliana

Tineke Casneuf; Stefanie De Bodt; Jeroen Raes; Steven Maere; Yves Van de Peer

BackgroundGenome analyses have revealed that gene duplication in plants is rampant. Furthermore, many of the duplicated genes seem to have been created through ancient genome-wide duplication events. Recently, we have shown that gene loss is strikingly different for large- and small-scale duplication events and highly biased towards the functional class to which a gene belongs. Here, we study the expression divergence of genes that were created during large- and small-scale gene duplication events by means of microarray data and investigate both the influence of the origin (mode of duplication) and the function of the duplicated genes on expression divergence.ResultsDuplicates that have been created by large-scale duplication events and that can still be found in duplicated segments have expression patterns that are more correlated than those that were created by small-scale duplications or those that no longer lie in duplicated segments. Moreover, the former tend to have highly redundant or overlapping expression patterns and are mostly expressed in the same tissues, while the latter show asymmetric divergence. In addition, a strong bias in divergence of gene expression was observed towards gene function and the biological process genes are involved in.ConclusionBy using microarray expression data for Arabidopsis thaliana, we show that the mode of duplication, the function of the genes involved, and the time since duplication play important roles in the divergence of gene expression and, therefore, in the functional divergence of genes after duplication.


American Journal of Human Genetics | 2005

Deletions involving long-range conserved nongenic sequences upstream and downstream of FOXL2 as a novel disease-causing mechanism in blepharophimosis syndrome.

Diane Beysen; Jeroen Raes; Bart P. Leroy; Anneke Lucassen; John R.W. Yates; Jill Clayton-Smith; H. Ilyina; S. Sklower Brooks; Sophie Christin-Maitre; Marc Fellous; Fryns Jp; J. R. Kim; Pablo Lapunzina; Emma Lemyre; Françoise Meire; Ludwine Messiaen; Christine Oley; M. Splitt; J. Thomson; Y. Van de Peer; Reiner A. Veitia; A. De Paepe; E De Baere

The expression of a gene requires not only a normal coding sequence but also intact regulatory regions, which can be located at large distances from the target genes, as demonstrated for an increasing number of developmental genes. In previous mutation studies of the role of FOXL2 in blepharophimosis syndrome (BPES), we identified intragenic mutations in 70% of our patients. Three translocation breakpoints upstream of FOXL2 in patients with BPES suggested a position effect. Here, we identified novel microdeletions outside of FOXL2 in cases of sporadic and familial BPES. Specifically, four rearrangements, with an overlap of 126 kb, are located 230 kb upstream of FOXL2, telomeric to the reported translocation breakpoints. Moreover, the shortest region of deletion overlap (SRO) contains several conserved nongenic sequences (CNGs) harboring putative transcription-factor binding sites and representing potential long-range cis-regulatory elements. Interestingly, the human region orthologous to the 12-kb sequence deleted in the polled intersex syndrome in goat, which is an animal model for BPES, is contained in this SRO, providing evidence of human-goat conservation of FOXL2 expression and of the mutational mechanism. Surprisingly, in a fifth family with BPES, one rearrangement was found downstream of FOXL2. In addition, we report nine novel rearrangements encompassing FOXL2 that range from partial gene deletions to submicroscopic deletions. Overall, genomic rearrangements encompassing or outside of FOXL2 account for 16% of all molecular defects found in our families with BPES. In summary, this is the first report of extragenic deletions in BPES, providing further evidence of potential long-range cis-regulatory elements regulating FOXL2 expression. It contributes to the enlarging group of developmental diseases caused by defective distant regulation of gene expression. Finally, we demonstrate that CNGs are candidate regions for genomic rearrangements in developmental genes.


Journal of Molecular Evolution | 2003

Genomewide Structural Annotation and Evolutionary Analysis of the Type I MADS-Box Genes in Plants

Stefanie De Bodt; Jeroen Raes; Kobe Florquin; Stephane Rombauts; Pierre Rouzé; Günter Theißen; Yves Van de Peer

The type I MADS-box genes constitute a largely unexplored subfamily of the extensively studied MADS-box gene family, well known for its role in flower development. Genes of the type I MADS-box subfamily possess the characteristic MADS box but are distinguished from type II MADS-box genes by the absence of the keratin-like box. In this in silico study, we have structurally annotated all 47 members of the type I MADS-box gene family in Arabidopsis thaliana and exerted a thorough analysis of the C-terminal regions of the translated proteins. On the basis of conserved motifs in the C-terminal region, we could classify the gene family into three main groups, two of which could be further subdivided. Phylogenetic trees were inferred to study the evolutionary relationships within this large MADS-box gene subfamily. These suggest for plant type I genes a dynamic of evolution that is significantly different from the mode of both animal type I (SRF) and plant type II (MIKC-type) gene phylogeny. The presence of conserved motifs in the majority of these genes, the identification of Oryza sativa MADS-box type I homologues, and the detection of expressed sequence tags for Arabidopsis thaliana and other plant type I genes suggest that these genes are indeed of functional importance to plants. It is therefore even more intriguing that, from an experimental point of view, almost nothing is known about the function of these MADS-box type I genes.


The Plant Cell | 2006

The TORNADO1 and TORNADO2 Genes Function in Several Patterning Processes during Early Leaf Development in Arabidopsis thaliana

Gerda Cnops; Pia Neyt; Jeroen Raes; Marica Petrarulo; Hilde Nelissen; Nenad Malenica; Christian Luschnig; Olaf Tietz; Franck Anicet Ditengou; Klaus Palme; Abdelkrim Azmi; Els Prinsen; Mieke Van Lijsebettens

In multicellular organisms, patterning is a process that generates axes in the primary body plan, creates domains upon organ formation, and finally leads to differentiation into tissues and cell types. We identified the Arabidopsis thaliana TORNADO1 (TRN1) and TRN2 genes and their role in leaf patterning processes such as lamina venation, symmetry, and lateral growth. In trn mutants, the leaf venation network had a severely reduced complexity: incomplete loops, no tertiary or quaternary veins, and vascular islands. The leaf laminas were asymmetric and narrow because of a severely reduced cell number. We postulate that the imbalance between cell proliferation and cell differentiation and the altered auxin distribution in both trn mutants cause asymmetric leaf growth and aberrant venation patterning. TRN1 and TRN2 were epistatic to ASYMMETRIC LEAVES1 with respect to leaf asymmetry, consistent with their expression in the shoot apical meristem and leaf primordia. TRN1 codes for a large plant-specific protein with conserved domains also found in a variety of signaling proteins, whereas TRN2 encodes a transmembrane protein of the tetraspanin family whose phylogenetic tree is presented. Double mutant analysis showed that TRN1 and TRN2 act in the same pathway.


Journal of Structural and Functional Genomics | 2003

Investigating ancient duplication events in the Arabidopsis genome

Jeroen Raes; Klaas Vandepoele; Cedric Simillion; Yvan Saeys; Yves Van de Peer

The complete genomic analysis of Arabidopsis thaliana has shown that a major fraction of the genome consists of paralogous genes that probably originated through one or more ancient large-scale gene or genome duplication events. However, the number and timing of these duplications still remains unclear, and several different hypotheses have been put forward recently. Here, we reanalyzed duplicated blocks found in the Arabidopsis genome described previously and determined their date of divergence based on silent substitution estimations between the paralogous genes and, where possible, by phylogenetic reconstruction. We show that methods based on averaging protein distances of heterogeneous classes of duplicated genes lead to unreliable conclusions and that a large fraction of blocks duplicated much more recently than assumed previously. We found clear evidence for one large-scale gene or even complete genome duplication event somewhere between 70 to 90 million years ago. Traces pointing to a much older (probably more than 200 million years) large-scale gene duplication event could be detected. However, for now it is impossible to conclude whether these old duplicates are the result of one or more large-scale gene duplication events.


Cellular and Molecular Life Sciences | 2004

Molecular characterization of Arabidopsis PHO80-like proteins, a novel class of CDKA;1-interacting cyclins

J A Torres Acosta; J. de Almeida Engler; Jeroen Raes; Zoltán Magyar; R De Groodt; Dirk Inzé; L. De Veylder

Cyclins are regulatory proteins that interact with cyclin-dependent kinases (CDKs) to control progression through the cell cycle. In Arabidopsis thaliana, 34 cyclin genes have been described, grouped into five different types (A, B, D, H, and T). A novel class of seven cyclins was isolated and characterized in Arabidopsis, designated P-type cyclins (CYCPs). They all share a conserved central region of 100 amino acids (“cyclin box”) displaying homology to the corresponding region of the PHO80 cyclin from Saccharomyces cerevisiae and the related G1 cyclins from Trypanosoma cruzi and T. brucei. The CYCP4;2 gene was able to partially re-establish the phosphate-dependent expression of the PHO5 gene in a pho80 mutant strain of yeast. The CYCPs interact preferentially with CDKA;1 in vivo and in vitro as shown by yeast two-hybrid analysis and co-immunoprecipitation experiments. P-type cyclins were mostly expressed in proliferating cells, albeit also in differentiating and mature tissues. The possible role of CYCPs in linking cell division, cell differentiation, and the nutritional status of the cell is discussed.


Immunity | 2017

Nlrp6- and ASC-Dependent Inflammasomes Do Not Shape the Commensal Gut Microbiota Composition

Michail Mamantopoulos; Francesca Ronchi; Filip Van Hauwermeiren; Sara Vieira-Silva; Bahtiyar Yilmaz; Liesbet Martens; Yvan Saeys; Stefan K Drexler; Amir S. Yazdi; Jeroen Raes; Mohamed Lamkanfi; Kathleen McCoy; Andy Wullaert

&NA; The gut microbiota regulate susceptibility to multiple human diseases. The Nlrp6‐ASC inflammasome is widely regarded as a hallmark host innate immune axis that shapes the gut microbiota composition. This notion stems from studies reporting dysbiosis in mice lacking these inflammasome components when compared with non‐littermate wild‐type animals. Here, we describe microbial analyses in inflammasome‐deficient mice while minimizing non‐genetic confounders using littermate‐controlled Nlrp6‐deficient mice and ex‐germ‐free littermate‐controlled ASC‐deficient mice that were all allowed to shape their gut microbiota naturally after birth. Careful microbial phylogenetic analyses of these cohorts failed to reveal regulation of the gut microbiota composition by the Nlrp6‐ and ASC‐dependent inflammasomes. Our results obtained in two geographically separated animal facilities dismiss a generalizable impact of Nlrp6‐ and ASC‐dependent inflammasomes on the composition of the commensal gut microbiota and highlight the necessity for littermate‐controlled experimental design in assessing the influence of host immunity on gut microbial ecology. HighlightsNon‐littermate controls fail to define host genetic impacts on the gut microbiotaLittermate separation does not reveal ASC‐Nlrp6 impacts on the gut microbiotaLifetime littermate separation does not reveal Nlrp6 impacts on DSS colitis &NA; Inflammasomes were proposed to shape gut ecology based on dysbiosis in mutant mice versus non‐littermate wild‐types. Mamantopoulos et al. show that inflammasomes do not affect gut microbiota composition when controlling for non‐genetic confounders. This finding dismisses the suggested role for inflammasomes in controlling host health through regulation of intestinal ecology.


The evolution of the genome | 2005

Small-scale gene duplications

John S. Taylor; Jeroen Raes

Publisher Summary This chapter traces the development of ideas concerning gene (and genome) duplication over the past century, and outlines the information now emerging from detailed genomic analyses. More than 35 years ago, Susumu Ohno stated that gene duplication was the single most important factor in evolution. Chromosome counts, studies of chromosome morphology, and isozyme electrophoresis all provide significant empirical and theoretical contributions to gene and genome duplication research. As this chapter makes clear, the understanding of the impact of gene duplication in evolution has been, and continues to be, enhanced by technological advances in microscopy, biochemistry, and molecular and cell biology. The future of this field, as with others in genome biology, lies in the integration of results from diverse research programs. With the use of broad-based analytical and conceptual approaches, it is now possible (at least in principle) to describe the entire paranome, compare expression domains among all paralogs, and identify the mutations responsible for expression variation among paralogs. It is also possible to compare interaction partners among paralogs, and to correlate this information with ever-increasing knowledge of the pathways in which genes act.

Collaboration


Dive into the Jeroen Raes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy Baele

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge