Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gwen Lomberk is active.

Publication


Featured researches published by Gwen Lomberk.


Biochemical Journal | 2005

The family feud: turning off Sp1 by Sp1-like KLF proteins.

Gwen Lomberk; Raul Urrutia

Sp1 is one of the best characterized transcriptional activators. The biological importance of Sp1 is underscored by the fact that several hundreds of genes are thought to be regulated by this protein. However, during the last 5 years, a more extended family of Sp1-like transcription factors has been identified and characterized by the presence of a conserved DNA-binding domain comprising three Krüppel-like zinc fingers. Each distinct family member differs in its ability to regulate transcription, and, as a consequence, to influence cellular processes. Specific activation and repression domains located within the N-terminal regions of these proteins are responsible for these differences by facilitating interactions with various co-activators and co-repressors. The present review primarily focuses on discussing the structural, biochemical and biological functions of the repressor members of this family of transcription factors. The existence of these transcriptional repressors provides a tightly regulated mechanism for silencing a large number of genes that are already known to be activated by Sp1.


Biochimica et Biophysica Acta | 2009

Sin3: master scaffold and transcriptional corepressor.

Adrienne Grzenda; Gwen Lomberk; Jin-San Zhang; Raul Urrutia

Sin3 was isolated over two decades ago as a negative regulator of transcription in budding yeast. Subsequent research has established the protein as a master transcriptional scaffold and corepressor capable of transcriptional silencing via associated histone deacetylases (HDACs). The core Sin3-HDAC complex interacts with a wide variety of repressors and corepressors, providing flexibility and expanded specificity in modulating chromatin structure and transcription. As a result, the Sin3/HDAC complex is involved in an array of biological and cellular processes, including cell cycle progression, genomic stability, embryonic development, and homeostasis. Abnormal recruitment of this complex or alteration of its enzymatic activity has been implicated in neoplastic transformation.


Journal of Clinical Investigation | 2012

Nuclear protein 1 promotes pancreatic cancer development and protects cells from stress by inhibiting apoptosis

Tewfik Hamidi; Hana Algül; Carla E. Cano; Maria José Sandi; Maria Inés Molejon; Marc Riemann; Ezequiel Calvo; Gwen Lomberk; Jean Charles Dagorn; Falk Weih; Raul Urrutia; Roland M. Schmid; Juan L. Iovanna

Pancreatic ductal adenocarcinoma (PDAC) has the lowest survival rate of all cancers and shows remarkable resistance to cell stress. Nuclear protein 1 (Nupr1), which mediates stress response in the pancreas, is frequently upregulated in pancreatic cancer. Here, we report that Nupr1 plays an essential role in pancreatic tumorigenesis. In a mouse model of pancreatic cancer with constitutively expressed oncogenic Kras(G12D), we found that loss of Nupr1 protected from the development of pancreatic intraepithelial neoplasias (PanINs). Further, in cultured pancreatic cells, nutrient deprivation activated Nupr1 expression, which we found to be required for cell survival. We found that Nupr1 protected cells from stress-induced death by inhibiting apoptosis through a pathway dependent on transcription factor RelB and immediate early response 3 (IER3). NUPR1, RELB, and IER3 proteins were coexpressed in mouse PanINs from Kras(G12D)-expressing pancreas. Moreover, pancreas-specific deletion of Relb in a Kras(G12D) background resulted in delayed in PanIN development associated with a lack of IER3 expression. Thus, efficient PanIN formation was dependent on the expression of Nupr1 and Relb, with likely involvement of IER3. Finally, in patients with PDAC, expression of NUPR1, RELB, and IER3 was significantly correlated with a poor prognosis. Cumulatively, these results reveal a NUPR1/RELB/IER3 stress-related pathway that is required for oncogenic Kras(G12D)-dependent transformation of the pancreas.


Clinical Cancer Research | 2012

Inhibition of histone deacetylation potentiates the evolution of acquired temozolomide resistance linked to MGMT upregulation in glioblastoma xenografts.

Gaspar J. Kitange; Ann C. Mladek; Brett L. Carlson; Mark A. Schroeder; Jenny L. Pokorny; Ling Cen; Paul A. Decker; Wenting Wu; Gwen Lomberk; Shiv K. Gupta; Raul Urrutia; Jann N. Sarkaria

Purpose: The therapeutic benefit of temozolomide in glioblastoma multiforme (GBM) is limited by resistance. The goal of this study was to elucidate mechanisms of temozolomide resistance in GBM. Experimental Design: We developed an in vivo GBM model of temozolomide resistance and used paired parental and temozolomide-resistant tumors to define the mechanisms underlying the development of resistance and the influence of histone deacetylation (HDAC) inhibition. Results: Analysis of paired parental and resistant lines showed upregulation of O6-methylguanine-DNA methyltransferase (MGMT) expression in 3 of the 5 resistant xenografts. While no significant change was detected in MGMT promoter methylation between parental and derivative-resistant samples, chromatin immunoprecipitation showed an association between MGMT upregulation and elevated acetylation of lysine 9 of histone H3 (H3K9-ac) and decreased dimethylation (H3K9-me2) in GBM12 and GBM14. In contrast, temozolomide resistance development in GBM22 was not linked to MGMT expression, and both parental and resistant lines had low H3K9-ac and high H3K9-me2 within the MGMT promoter. In the GBM12TMZ-resistant line, MGMT reexpression was accompanied by increased recruitment of SP1, C-JUN, NF-κB, and p300 within the MGMT promoter. Interestingly, combined treatment of GBM12 flank xenografts with temozolomide and the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) favored the evolution of temozolomide resistance by MGMT overexpression as compared with treatment with temozolomide alone. Conclusion: This study shows, for the first time, a unique mechanism of temozolomide resistance development driven by chromatin-mediated MGMT upregulation and highlights the potential for epigenetically directed therapies to influence the mechanisms of resistance development in GBM. Clin Cancer Res; 18(15); 4070–9. ©2012 AACR.


Journal of Biological Chemistry | 2011

Disruption of a Novel Krüppel-like Transcription Factor p300-regulated Pathway for Insulin Biosynthesis Revealed by Studies of the c.-331 INS Mutation Found in Neonatal Diabetes Mellitus

Amélie Bonnefond; Gwen Lomberk; Navtej Buttar; Kanetee Busiah; Emmanuel Vaillant; Stéphane Lobbens; Loic Yengo; Aurélie Dechaume; Brigitte Mignot; Albane Simon; Raphael Scharfmann; Bernadette Neve; Sinan Tanyolaç; Uğur Hodoğlugil; François Pattou; Hélène Cavé; Juan L. Iovanna; Roland Stein; Michel Polak; Martine Vaxillaire; Philippe Froguel; Raul Urrutia

Krüppel-like transcription factors (KLFs) have elicited significant attention because of their regulation of essential biochemical pathways and, more recently, because of their fundamental role in the mechanisms of human diseases. Neonatal diabetes mellitus is a monogenic disorder with primary alterations in insulin secretion. We here describe a key biochemical mechanism that underlies neonatal diabetes mellitus insulin biosynthesis impairment, namely a homozygous mutation within the insulin gene (INS) promoter, c.-331C>G, which affects a novel KLF-binding site. The combination of careful expression profiling, electromobility shift assays, reporter experiments, and chromatin immunoprecipitation demonstrates that, among 16 different KLF proteins tested, KLF11 is the most reliable activator of this site. Congruently, the c.-331C>G INS mutation fails to bind KLF11, thus inhibiting activation by this transcription factor. Klf11−/− mice recapitulate the disruption in insulin production and blood levels observed in patients. Thus, these data demonstrate an important role for KLF11 in the regulation of INS transcription via the novel c.-331 KLF site. Lastly, our screening data raised the possibility that other members of the KLF family may also regulate this promoter under distinct, yet unidentified, cellular contexts. Collectively, this study underscores a key role for KLF proteins in biochemical mechanisms of human diseases, in particular, early infancy onset diabetes mellitus.


Hepatology | 2011

Complementary vascular and matrix regulatory pathways underlie the beneficial mechanism of action of sorafenib in liver fibrosis.

Dominique Thabut; Chittaranjan Routray; Gwen Lomberk; Uday Shergill; Kevin J. Glaser; Robert C. Huebert; Leena Patel; Tetyana V. Masyuk; Boris Blechacz; Andrew J. Vercnocke; Erik L. Ritman; Richard L. Ehman; Raul Urrutia; Vijay H. Shah

Paracrine signaling between hepatic stellate cells (HSCs) and liver endothelial cells (LECs) modulates fibrogenesis, angiogenesis, and portal hypertension. However, mechanisms regulating these processes are not fully defined. Sorafenib is a receptor tyrosine kinase inhibitor that blocks growth factor signaling in tumor cells but also displays important and not yet fully characterized effects on liver nonparenchymal cells including HSCs and LECs. The aim of this study was to test the hypothesis that sorafenib influences paracrine signaling between HSCs and LECs and thereby regulates matrix and vascular changes associated with chronic liver injury. Complementary magnetic resonance elastography, micro–computed tomography, and histochemical analyses indicate that sorafenib attenuates the changes in both matrix and vascular compartments that occur in response to bile duct ligation–induced liver injury in rats. Cell biology studies demonstrate that sorafenib markedly reduces cell–cell apposition and junctional complexes, thus reducing the proximity typically observed between these sinusoidal barrier cells. At the molecular level, sorafenib down‐regulates angiopoietin‐1 and fibronectin, both released by HSCs in a manner dependent on the transcription factor Kruppel‐like factor 6 , suggesting that this pathway underlies both matrix and vascular changes associated with chronic liver disease. Conclusion: Collectively, the results of this study demonstrate that sorafenib inhibits both matrix restructuring and vascular remodeling that accompany chronic liver diseases and characterize cell and molecular mechanisms underlying this effect. These data may help to refine future therapies for advanced gastrointestinal and liver diseases characterized by abundant fibrosis and neovascularization. (HEPATOLOGY 2011;)


Cancer Letters | 2013

Insights into the epigenetic mechanisms controlling pancreatic carcinogenesis

Angela L. McCleary-Wheeler; Gwen Lomberk; Frank U. Weiss; Günter Schneider; Muller Fabbri; Tara L. Poshusta; Nelson Dusetti; Sandra Baumgart; Juan L. Iovanna; Volker Ellenrieder; Raul Urrutia; Martin E. Fernandez-Zapico

During the last couple decades, we have significantly advanced our understanding of mechanisms underlying the development of pancreatic ductual adenocarcinoma (PDAC). In the late 1990s into the early 2000s, a model of PDAC development and progression was developed as a multi-step process associated with the accumulation of somatic mutations. The correlation and association of these particular genetic aberrations with the establishment and progression of PDAC has revolutionized our understanding of this process. However, this model leaves out other molecular events involved in PDAC pathogenesis that contribute to its development and maintenance, specifically those being epigenetic events. Thus, a new model considering the new scientific paradigms of epigenetics will provide a more comprehensive and useful framework for understanding the pathophysiological mechanisms underlying this disease. Epigenetics is defined as the type of inheritance not based on a particular DNA sequence but rather traits that are passed to the next generation via DNA and histone modifications as well as microRNA-dependent mechanisms. Key tumor suppressors that are well established to play a role in PDAC may be altered through hypermethylation, and oncogenes can be upregulated secondary to permissive histone modifications. Factors involved in tumor invasiveness can be aberrantly expressed through dysregulated microRNAs. A noteworthy characteristic of epigenetic-based inheritance is its reversibility, which is in contrast to the stable nature of DNA sequence-based alterations. Given this nature of epigenetic alterations, it becomes imperative that our understanding of epigenetic-based events promoting and maintaining PDAC continues to grow.


Journal of Biological Chemistry | 2012

Mechanistic Role for a Novel Glucocorticoid-KLF11 (TIEG2) Protein Pathway in Stress-induced Monoamine Oxidase A Expression

Matthew Grunewald; Shakevia Johnson; Deyin Lu; Zhe Wang; Gwen Lomberk; Paul R. Albert; Craig A. Stockmeier; Jeffrey H. Meyer; Raul Urrutia; Klaus A. Miczek; Mark C. Austin; Junming Wang; Ian A. Paul; William L. Woolverton; Seungmae Seo; Donald B. Sittman; Xiao Ming Ou

Background: The function of KLF11/TIEG2 under stressful conditions is undefined. Results: KLF11 increases brain MAO expression through its promoter and a chromatin partner, which can be enhanced by stress. Conclusion: This is the first elucidation of mechanisms underlying stress-induced KLF11-MAO up-regulation. Significance: This novel KLF11-MAO pathway may play an important role in stress-related brain disorders. Chronic stress is a risk factor for psychiatric illnesses, including depressive disorders, and is characterized by increased blood glucocorticoids and brain monoamine oxidase A (MAO A, which degrades monoamine neurotransmitters). This study elucidates the relationship between stress-induced MAO A and the transcription factor Kruppel-like factor 11 (KLF11, also called TIEG2, a member of the Sp/KLF- family), which inhibits cell growth. We report that 1) a glucocorticoid (dexamethasone) increases KLF11 mRNA and protein levels in cultured neuronal cells; 2) overexpressing KLF11 increases levels of MAO A mRNA and enzymatic activity, which is further enhanced by glucocorticoids; in contrast, siRNA-mediated KLF11 knockdown reduces glucocorticoid-induced MAO A expression in cultured neurons; 3) induction of KLF11 and translocation of KLF11 from the cytoplasm to the nucleus are key regulatory mechanisms leading to increased MAO A catalytic activity and mRNA levels because of direct activation of the MAO A promoter via Sp/KLF-binding sites; 4) KLF11 knockout mice show reduced MAO A mRNA and catalytic activity in the brain cortex compared with wild-type mice; and 5) exposure to chronic social defeat stress induces blood glucocorticoids and activates the KLF11 pathway in the rat brain, which results in increased MAO A mRNA and enzymatic activity. Thus, this study reveals for the first time that KLF11 is an MAO A regulator and is produced in response to neuronal stress, which transcriptionally activates MAO A. The novel glucocorticoid-KLF11-MAO A pathway may play a crucial role in modulating distinct pathophysiological steps in stress-related disorders.


Journal of Biological Chemistry | 2009

Silencing of the Transforming Growth Factor-β (TGFβ) Receptor II by Krüppel-like Factor 14 Underscores the Importance of a Negative Feedback Mechanism in TGFβ Signaling

Mark J. Truty; Gwen Lomberk; Martin E. Fernandez-Zapico; Raul Urrutia

The role of non-Smad proteins in the regulation of transforming growth factor-β (TGFβ) signaling is an emerging line of active investigation. Here, we characterize the role of KLF14, as a TGFβ-inducible, non-Smad protein that silences the TGFβ receptor II (TGFβRII) promoter. Together with endocytosis, transcriptional silencing is a critical mechanism for down-regulating TGFβ receptors at the cell surface. However, the mechanisms underlying transcriptional repression of these receptors remain poorly understood. KLF14 has been chosen from a comprehensive screen of 24 members of the Sp/KLF family due to its TGFβ inducibility, its ability to regulate the TGFβRII promoter, and the fact that this protein had yet to be functionally characterized. We find that KLF14 represses the TGFβRII, a function that is augmented by TGFβ treatment. Mapping of the TGFβRII promoter, in combination with site-directed mutagenesis, electromobility shift, and chromatin immunoprecipitation assays, have identified distinct GC-rich sequences used by KLF14 to regulate this promoter. Mechanistically, KLF14 represses the TGFβRII promoter via a co-repressor complex containing mSin3A and HDAC2. Furthermore, the TGFβ pathway activation leads to recruitment of a KLF14-mSin3A-HDAC2 repressor complex to the TGFβRII promoter, as well as the remodeling of chromatin to increase histone marks that associate with transcriptional silencing. Thus, these results describe a novel negative-feedback mechanism by which TGFβRII activation at the cell surface induces the expression of KLF14 to ultimately silence the TGFβRII and further expand the network of non-Smad transcription factors that participate in the TGFβ pathway.


Genes, Chromosomes and Cancer | 1999

Frequent deletions within FRA7G at 7q31.2 in invasive epithelial ovarian cancer

Haojie Huang; Christopher P. Reed; Aderonke Mordi; Gwen Lomberk; Liang Wang; Viji Shridhar; Lynn C. Hartmann; Robert B. Jenkins; David I. Smith

We previously showed that FRA7G, an aphidicolin‐inducible common fragile site at 7q31.2, colocalized with the common region of loss of heterozygosity (LOH) in a number of different tumors. Based on the sequence analysis of 150 Kb in the FRA7G region, we identified four new polymorphic microsatellite markers. In this article, we have used these four microsatellite markers and eight additional markers from 7q22–32 to analyze the breakage and loss of the region surrounding FRA7G in 49 invasive epithelial ovarian cancers and three borderline ovarian tumors. No allelic loss was detected in the ovarian tumors of borderline malignancy, but 71% (35/49) of the invasive tumors showed LOH at one or more loci in the region analyzed. Of the 12 markers analyzed, most of the markers exhibiting a high frequency of LOH were within FRA7G, and the highest frequency of LOH was seen with the new marker 7G14 (37%, 15/41). Breakpoint analysis in tumors with LOH demonstrated that the frequent loss of DNA sequences seen within the FRA7G region was due to frequent small interstitial deletions and not a result of loss of the whole fragile site region. These findings indicate that FRA7G does play a role in the breakage and loss of 7q sequences in invasive ovarian cancer. In addition, the newly identified markers enable us to further delineate a smallest common region of loss in invasive ovarian tumors to a 150‐Kb region flanked by markers D7S486 and 7G14. Genes Chromosomes Cancer 24:48–55, 1999.

Collaboration


Dive into the Gwen Lomberk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan L. Iovanna

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge