Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angela Mathison is active.

Publication


Featured researches published by Angela Mathison.


Journal of Biological Chemistry | 2012

Sequence-specific Recruitment of Heterochromatin Protein 1 via Interaction with Krüppel-like Factor 11, a Human Transcription Factor Involved in Tumor Suppression and Metabolic Diseases

Gwen Lomberk; Angela Mathison; Adrienne Grzenda; Seungmae Seo; Cathrine J. DeMars; Sumera Rizvi; Juliana Bonilla-Velez; Ezequiel Calvo; Martin E. Fernandez-Zapico; Juan L. Iovanna; Navtej Buttar; Raul Urrutia

Background: Chromatin remodeling mechanisms utilized by Krüppel-like factor proteins remain poorly defined. Results: Krüppel-like factor 11 directly recruits heterochromatin protein 1α to promoters in a sequence-specific manner. Conclusion: Coupling to heterochromatin protein 1 α and its histone methyltransferase underlies Krüppel-like factor-mediated gene expression and tumor suppression. Significance: This data advances our understanding of how chromatin-mediated mechanisms achieve these functions with increased specificity for target genes. Heterochromatin protein 1 (HP1) proteins are “gatekeepers” of epigenetic gene silencing that is mediated by lysine 9 of histone H3 methylation (H3K9me). Current knowledge supports a paradigm whereby HP1 proteins achieve repression by binding to H3K9me marks and interacting to H3K9 histone methyltransferases (HMTs), such as SUV39H1, which methylate this residue on adjacent nucleosomes thereby compacting chromatin and silencing gene expression. However, the mechanism underlying the recruitment of this epigenetic regulator to target gene promoters remains poorly characterized. In the current study, we reveal for the first time a mechanism whereby HP1 is recruited to promoters by a well characterized Krüppel-like transcription factor (KLF), in a sequence-specific manner, to mediate complex biological phenomena. A PXVXL HP1-interacting domain identified at position 487–491 of KLF11 mediates the binding of HP1α and KLF11 in vitro and in cultured cells. KLF11 also recruits HP1α and its histone methyltransferase, SUV39H1, to promoters to limit KLF11-mediated gene activation. Indeed, a KLF11ΔHP1 mutant derepresses KLF11-regulated cancer genes, by inhibiting HP1-SUV39H1 recruitment, decreasing H3K9me3, while increasing activation-associated marks. Biologically, impairment of KLF11-mediated HP1-HMT recruitment abolishes tumor suppression, providing direct evidence that HP1-HMTs act in a sequence-specific manner to achieve this function rather than its well characterized binding to methylated chromatin without intermediary. Collectively, these studies reveal a novel role for HP1 as a cofactor in tumor suppression, expand our mechanistic understanding of a KLF associated to human disease, and outline cellular and biochemical mechanisms underlying this phenomenon, increasing the specificity of targeting HP1-HMT complexes to gene promoters.


Journal of Biological Chemistry | 2012

Krüppel-like Factor 11 Differentially Couples to Histone Acetyltransferase and Histone Methyltransferase Chromatin Remodeling Pathways to Transcriptionally Regulate Dopamine D2 Receptor in Neuronal Cells

Seungmae Seo; Gwen Lomberk; Angela Mathison; Navtej Buttar; Jewel L. Podratz; Ezequiel Calvo; Juan L. Iovanna; Stephen Brimijoin; Anthony J. Windebank; Raul Urrutia

Background: Chromatin-mediated events utilized by Krüppel-Like factors in neurons remain undefined. Results: Krüppel-Like factor 11 couples to antagonistic chromatin pathways (p300 versus heterochromatin protein 1) to regulate the dopamine D2 receptor gene. Conclusion: This is the first description of mechanisms underlying Krüppel-like factor-mediated functions in neurons. Significance: This knowledge expands our understanding of chromatin-mediated mechanisms that influence homeostasis in highly specialized cells. The importance of Krüppel-like factor (KLF)-mediated transcriptional pathways in the biochemistry of neuronal differentiation has been recognized relatively recently. Elegant studies have revealed that KLF proteins are important regulators of two major molecular and cellular processes critical for neuronal cell differentiation: neurite formation and the expression of neurotransmitter-related genes. However, whether KLF proteins mediate these key processes in a separate or coordinated fashion remains unknown. Moreover, knowledge on the contribution of chromatin dynamics to the biochemical mechanisms utilized by these proteins to perform their function is absent. Here we report the characterization of two antagonistic, chromatin-mediated mechanisms by which KLF11, also known as TIEG2 (transforming growth factor-β-inducible early gene 2) and MODY VII (maturity onset diabetes of the young VII), regulates transcription of the fopamine D2 receptor (Drd2) gene. First, KLF11 activates transcription by binding to a distinct Sp-KLF site within the Drd2 promoter (−98 to −94) and recruiting the p300 histone acetyltransferase. Second, Drd2 transcriptional activation is partially antagonized by heterochromatin protein 1 (HP1), the code reader for histone H3 lysine 9 methylation. Interestingly, KLF11 regulates neurotransmitter receptor gene expression in differentiating neuronal cell populations without affecting neurite formation. Overall, these studies highlight histone methylation and acetylation as key biochemical mechanisms modulating KLF-mediated neurotransmitter gene transcription. These data extend our knowledge of chromatin-mediated biochemical events that maintain key phenotypic features of differentiated neuronal cells.


Journal of Clinical Investigation | 2015

Perhexiline activates KLF14 and reduces atherosclerosis by modulating ApoA-I production

Yanhong Guo; Yanbo Fan; Jifeng Zhang; Gwen Lomberk; Zhou Zhou; Lijie Sun; Angela Mathison; Minerva T. Garcia-Barrio; Ji Zhang; Lixia Zeng; Lei Li; Subramaniam Pennathur; Cristen J. Willer; Daniel J. Rader; Raul Urrutia; Y. Eugene Chen

Recent genome-wide association studies have revealed that variations near the gene locus encoding the transcription factor Krüppel-like factor 14 (KLF14) are strongly associated with HDL cholesterol (HDL-C) levels, metabolic syndrome, and coronary heart disease. However, the precise mechanisms by which KLF14 regulates lipid metabolism and affects atherosclerosis remain largely unexplored. Here, we report that KLF14 is dysregulated in the liver of 2 dyslipidemia mouse models. We evaluated the effects of both KLF14 overexpression and genetic inactivation and determined that KLF14 regulates plasma HDL-C levels and cholesterol efflux capacity by modulating hepatic ApoA-I production. Hepatic-specific Klf14 deletion in mice resulted in decreased circulating HDL-C levels. In an attempt to pharmacologically target KLF14 as an experimental therapeutic approach, we identified perhexiline, an approved therapeutic small molecule presently in clinical use to treat angina and heart failure, as a KLF14 activator. Indeed, in WT mice, treatment with perhexiline increased HDL-C levels and cholesterol efflux capacity via KLF14-mediated upregulation of ApoA-I expression. Moreover, perhexiline administration reduced atherosclerotic lesion development in apolipoprotein E-deficient mice. Together, these results provide comprehensive insight into the KLF14-dependent regulation of HDL-C and subsequent atherosclerosis and indicate that interventions that target the KLF14 pathway should be further explored for the treatment of atherosclerosis.


Pancreatology | 2010

Pancreatic Stellate Cell Models for Transcriptional Studies of Desmoplasia-Associated Genes

Angela Mathison; Ann Liebl; Jinai Bharucha; Debabrata Mukhopadhyay; Gwen Lomberk; Vijay H. Shah; Raul Urrutia

Background: Pancreatic stellate cells are emerging as key players in pathophysiopathological processes underlying the development of pancreatic disease, including pancreatitis and cancer. The cells are scarce in the pancreas making their isolation time and resource use consuming. Methods: Therefore, with the ultimate goal of facilitating mechanistic studies, here we report the isolation, characterization, and immortalization of stellate cell lines from rat and mouse origin. Results: These cell lines display morphological and molecular markers as well as non-tumorigenic characteristics similar to the frequently used hepatic counterparts. In addition, we have tested their robustness as a model for transcriptional regulatory studies. We find that these cells respond well to TGFβ signaling by triggering a distinct cascade of gene expression, some genes overlap with the TGFβ response of LX2 cells. These cells express several key chromatin proteins and epigenetic regulators involved in the regulation of gene expression, including co-repressors such as Sin3A (short-term repression), HP1 (long-term repression), as well as CBP/p300 (activation). Furthermore, these cells are well suited for Gal4-based transcriptional activation and repression assays. Conclusions: The cell model reported here may therefore help fuel investigations in the field of signaling, transcription, and perhaps other studies on similarly exciting cellular processes.


Journal of Biological Chemistry | 2014

New role for Kruppel-like factor 14 as a transcriptional activator involved in the generation of signaling lipids.

Thiago de Assuncao; Gwen Lomberk; Sheng Cao; Usman Yaqoob; Angela Mathison; Douglas A. Simonetto; Robert C. Huebert; Raul Urrutia; Vijay H. Shah

Background: KLF14 has elicited attention as a master regulator of lipid metabolism. Results: KLF14 regulates chromatin remodeling on sphingosine kinase 1 gene leading to its activation and sphingosine-1-phosphate production. Conclusion: KLF14 acts as a transcriptional activator for the generation of lipid signaling molecules. Significance: This new knowledge extends the functions assigned to KLF14 and contributes to understanding its role in human diseases. Sphingosine kinase 1 (SK1) is an FGF-inducible gene responsible for generation of sphingosine-1-phosphate, a critical lipid signaling molecule implicated in diverse endothelial cell functions. In this study, we identified SK1 as a target of the canonical FGF2/FGF receptor 1 activation pathway in endothelial cells and sought to identify novel transcriptional pathways that mediate lipid signaling. Studies using the 1.9-kb SK1 promoter and deletion mutants revealed that basal and FGF2-stimulated promoter activity occurred through two GC-rich regions located within 633 bp of the transcription start site. Screening for GC-rich binding transcription factors that could activate this site demonstrated that KLF14, a gene implicated in obesity and the metabolic syndrome, binds to this region. Congruently, overexpression of KLF14 increased basal and FGF2-stimulated SK1 promoter activity by 3-fold, and this effect was abrogated after mutation of the GC-rich sites. In addition, KLF14 siRNA transfection decreased SK1 mRNA and protein levels by 3-fold. Congruently, SK1 mRNA and protein levels were decreased in livers from KLF14 knock-out mice. Combined, luciferase, gel shift, and chromatin immunoprecipitation assays showed that KLF14 couples to p300 to increase the levels of histone marks associated with transcriptional activation (H4K8ac and H3K14ac), while decreasing repressive marks (H3K9me3 and H3K27me3). Collectively, the results demonstrate a novel mechanism whereby SK1 lipid signaling is regulated by epigenetic modifications conferred by KLF14 and p300. Thus, this is the first description of the activity and mechanisms underlying the function of KLF14 as an activator protein and novel regulator of lipid signaling.


PLOS ONE | 2013

A Novel Role of the Sp/KLF Transcription Factor KLF11 in Arresting Progression of Endometriosis

Gaurang S. Daftary; Ye Zheng; Zaid M. Tabbaa; John K. Schoolmeester; R.P. Gada; Adrienne Grzenda; Angela Mathison; Gary L. Keeney; Gwen Lomberk; Raul Urrutia

Endometriosis affects approximately 10% of young, reproductive-aged women. Disease associated pelvic pain; infertility and sexual dysfunction have a significant adverse clinical, social and financial impact. As precise disease etiology has remained elusive, current therapeutic strategies are empiric, unfocused and often unsatisfactory. Lack of a suitable genetic model has impaired further translational research in the field. In this study, we evaluated the role of the Sp/KLF transcription factor KLF11/Klf11 in the pathogenesis of endometriosis. KLF11, a human disease-associated gene is etiologically implicated in diabetes, uterine fibroids and cancer. We found that KLF11 expression was diminished in human endometriosis implants and further investigated its pathogenic role in Klf11-/- knockout mice with surgically induced endometriotic lesions. Lesions in Klf11-/- animals were large and associated with prolific fibrotic adhesions resembling advanced human disease in contrast to wildtype controls. To determine phenotype-specificity, endometriosis was also generated in Klf9-/- animals. Unlike in Klf11-/- mice, lesions in Klf9-/- animals were neither large, nor associated with a significant fibrotic response. KLF11 also bound to specific elements located in the promoter regions of key fibrosis-related genes from the Collagen, MMP and TGF-β families in endometrial stromal cells. KLF11 binding resulted in transcriptional repression of these genes. In summary, we identify a novel pathogenic role for KLF11 in preventing de novo disease-associated fibrosis in endometriosis. Our model validates in vivo the phenotypic consequences of dysregulated Klf11 signaling. Additionally, it provides a robust means not only for further detailed mechanistic investigation but also the ability to test any emergent translational ramifications thereof, so as to expand the scope and capability for treatment of endometriosis.


Journal of Biological Chemistry | 2012

Detailed structural-functional analysis of the Kruppel-like factor 16 (KLF16) transcription factor reveals novel mechanisms for silencing Sp/KLF sites involved in metabolism and endocrinology.

Gaurang S. Daftary; Gwen Lomberk; Navtej Buttar; Thomas W. Allen; Adrienne Grzenda; Jin-San Zhang; Ye Zheng; Angela Mathison; R.P. Gada; Ezequiel Calvo; Juan L. Iovanna; Daniel D. Billadeau; Franklyn G. Prendergast; Raul Urrutia

Background: KLF16 is the least characterized family member of recently described metabolic regulators. Results: We extensively characterize mechanisms of DNA binding and chromatin coupling used by KLF16 to regulate metabolic gene expression. Conclusion: KLF16 is a novel regulator of metabolic genes by regulatable coupling to Sin3-histone deacetylase complexes. Significance: This knowledge reveals key mechanisms used by KLF16 as a regulator of metabolic gene expression. Krüppel-like factor (KLF) proteins have elicited significant attention due to their emerging key role in metabolic and endocrine diseases. Here, we extend this knowledge through the biochemical characterization of KLF16, unveiling novel mechanisms regulating expression of genes involved in reproductive endocrinology. We found that KLF16 selectively binds three distinct KLF-binding sites (GC, CA, and BTE boxes). KLF16 also regulated the expression of several genes essential for metabolic and endocrine processes in sex steroid-sensitive uterine cells. Mechanistically, we determined that KLF16 possesses an activation domain that couples to histone acetyltransferase-mediated pathways, as well as a repression domain that interacts with the histone deacetylase chromatin-remodeling system via all three Sin3 isoforms, suggesting a higher level of plasticity in chromatin cofactor selection. Molecular modeling combined with molecular dynamic simulations of the Sin3a-KLF16 complex revealed important insights into how this interaction occurs at an atomic resolution level, predicting that phosphorylation of Tyr-10 may modulate KLF16 function. Phosphorylation of KLF16 was confirmed by in vivo 32P incorporation and controlled by a Y10F site-directed mutant. Inhibition of Src-type tyrosine kinase signaling as well as the nonphosphorylatable Y10F mutation disrupted KLF16-mediated gene silencing, demonstrating that its function is regulatable rather than constitutive. Subcellular localization studies revealed that signal-induced nuclear translocation and euchromatic compartmentalization constitute an additional mechanism for regulating KLF16 function. Thus, this study lends insights on key biochemical mechanisms for regulating KLF sites involved in reproductive biology. These data also contribute to the new functional information that is applicable to understanding KLF16 and other highly related KLF proteins.


Epigenetics & Chromatin | 2013

Functional characterization of EZH2β reveals the increased complexity of EZH2 isoforms involved in the regulation of mammalian gene expression

Adrienne Grzenda; Gwen Lomberk; Phyllis A. Svingen; Angela Mathison; Ezequiel Calvo; Juan L. Iovanna; Yuning Xiong; William A. Faubion; Raul Urrutia

BackgroundHistone methyltransferase enhancer of zeste homologue 2 (EZH2) forms an obligate repressive complex with suppressor of zeste 12 and embryonic ectoderm development, which is thought, along with EZH1, to be primarily responsible for mediating Polycomb-dependent gene silencing. Polycomb-mediated repression influences gene expression across the entire gamut of biological processes, including development, differentiation and cellular proliferation. Deregulation of EZH2 expression is implicated in numerous complex human diseases. To date, most EZH2-mediated function has been primarily ascribed to a single protein product of the EZH2 locus.ResultsWe report that the EZH2 locus undergoes alternative splicing to yield at least two structurally and functionally distinct EZH2 methyltransferases. The longest protein encoded by this locus is the conventional enzyme, which we refer to as EZH2α, whereas EZH2β, characterized here, represents a novel isoform. We find that EZH2β localizes to the cell nucleus, complexes with embryonic ectoderm development and suppressor of zeste 12, trimethylates histone 3 at lysine 27, and mediates silencing of target promoters. At the cell biological level, we find that increased EZH2β induces cell proliferation, demonstrating that this protein is functional in the regulation of processes previously attributed to EZH2α. Biochemically, through the use of genome-wide expression profiling, we demonstrate that EZH2β governs a pattern of gene repression that is often ontologically redundant from that of EZH2α, but also divergent for a wide variety of specific target genes.ConclusionsCombined, these results demonstrate that an expanded repertoire of EZH2 writers can modulate histone code instruction during histone 3 lysine 27-mediated gene silencing. These data support the notion that the regulation of EZH2-mediated gene silencing is more complex than previously anticipated and should guide the design and interpretation of future studies aimed at understanding the biochemical and biological roles of this important family of epigenomic regulators.


Current Opinion in Gastroenterology | 2008

The sunset of somatic genetics and the dawn of epigenetics: A new frontier in pancreatic cancer research

Gwen Lomberk; Angela Mathison; Adrienne Grzenda; Raul Urrutia

Purpose of review The excitement of finding a cancer modulator which is either mutated or deleted in vivo (genetics), unfortunately, is shadowed by the fact that we scientists have failed to live to the promise of gene therapy, and therefore, these genes cannot be replaced to cure the patients. On the contrary, both DNA methylation and chromatin-mediated inactivation of tumor suppressor genes (epigenetics), for example, are reversible as demonstrated by the relative success of emerging therapies. Therefore, epigenetics with its molecular basis (DNA methylation and chromatin modification) is among the most promising areas of cancer research and is a nascent field in pancreatic cancer research. Recent findings Here, we review and update novel findings on epigenetics as it applies to pancreatic cancer. Summary Special focus has been given to novel potential therapeutic targets and currently available drugs, which are emerging from this exciting new field of pancreatic cancer research.


PLOS ONE | 2013

Role for Krüppel-Like Transcription Factor 11 in Mesenchymal Cell Function and Fibrosis

Angela Mathison; Adrienne Grzenda; Gwen Lomberk; Gabriel Velez; Navtej Buttar; Pamela S. Tietz; Helen Hendrickson; Ann Liebl; Yuning Y. Xiong; Gregory Gores; Martin E. Fernandez-Zapico; Nicholas F. LaRusso; William A. Faubion; Vijay H. Shah; Raul Urrutia

Krüppel-like factor 11 (KLF11) and the highly homologous KLF10 proteins are transcription factors originating from duplication of the Drosophila melanogaster ancestor cabut. The function of these proteins in epithelial cells has been previously characterized. In the current study, we report a functional role for KLF11 in mesenchymal cells and in mesenchymal cell dysfunction, namely, fibrosis, and subsequently perform a detailed cellular, molecular, and in vivo characterization of this phenomenon. We find that, in cultured mesenchymal cells, enhanced expression of KLF11 results in activated extracellular matrix pathways, including collagen gene silencing and matrix metalloproteinases activation without changes in tissue inhibitors of metalloproteinases. Combined, reporter and chromatin immunoprecipitation assays demonstrate that KLF11 interacts directly with the collagen 1a2 (COL1A2) promoter in mesenchymal cells to repress its activity. Mechanistically, KLF11 regulates collagen gene expression through the heterochromatin protein 1 gene-silencing pathway as mutants defective for coupling to this epigenetic modifier lose the ability to repress COL1A2. Expression studies reveal decreased levels of KLF11 during liver fibrogenesis after chemically induced injury in vivo. Congruently, KLF11-/- mice, which should be deficient in the hypothesized anti-fibrogenic brake imposed by this transcription factor, display an enhanced response to liver injury with increased collagen fibril deposition. Thus, KLFs expands the repertoire of transcription factors involved in the regulation of extracellular matrix proteins in mesenchymal cells and define a novel pathway that modulates the fibrogenic response during liver injury.

Collaboration


Dive into the Angela Mathison's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge