Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gwenaël Vourc'h is active.

Publication


Featured researches published by Gwenaël Vourc'h.


American Journal of Tropical Medicine and Hygiene | 2012

Human risk of infection with Borrelia burgdorferi, the Lyme disease agent, in eastern United States.

Maria A. Diuk-Wasser; Anne G. Hoen; Paul Cislo; Robert Brinkerhoff; Sarah A. Hamer; Michelle Rowland; Roberto Cortinas; Gwenaël Vourc'h; Forrest Melton; Graham J. Hickling; Jean I. Tsao; Jonas Bunikis; Alan G. Barbour; Uriel Kitron; Joseph Piesman; Durland Fish

The geographic pattern of human risk for infection with Borrelia burgdorferi sensu stricto, the tick-borne pathogen that causes Lyme disease, was mapped for the eastern United States. The map is based on standardized field sampling in 304 sites of the density of Ixodes scapularis host-seeking nymphs infected with B. burgdorferi, which is closely associated with human infection risk. Risk factors for the presence and density of infected nymphs were used to model a continuous 8 km×8 km resolution predictive surface of human risk, including confidence intervals for each pixel. Discontinuous Lyme disease risk foci were identified in the Northeast and upper Midwest, with a transitional zone including sites with uninfected I. scapularis populations. Given frequent under- and over-diagnoses of Lyme disease, this map could act as a tool to guide surveillance, control, and prevention efforts and act as a baseline for studies tracking the spread of infection.


Vector-borne and Zoonotic Diseases | 2010

Blood-feeding behavior of Aedes albopictus, a vector of Chikungunya on La Réunion

Hélène Delatte; Amélie Desvars; Anthony Bouétard; Séverine Bord; Geoffrey Gimonneau; Gwenaël Vourc'h; Didier Fontenille

Chikungunya virus (CHIKV) has long been considered to be transmitted to humans by the human-biting mosquito Aedes aegypti, especially in Africa. However, the recent outbreak of CHIKV involved another vector, Aedes albopictus, and serological data in the literature suggest that several species of domestic or human-related vertebrates can be contaminated by this virus. However, the role of Ae. albopictus mosquitoes as potential enzootic vectors for CHIKV has not yet been evaluated. Here we investigate Ae. albopictus feeding and resting behaviors in an area where a CHIKV epidemic recently occurred, which means deciphering host-seeking and feeding behaviors on several vertebrate species, measuring endophagous/exophagous (activity), endophilic/exophilic (resting) behaviors and its diel (24 h, day/night) biting activity. Ae. albopictus was found to have bimodal daily feeding activities and was found to have exophagic (89%) and exophilic (87%) behaviors. Ae. albopictus showed an opportunistic feeding behavior on a wide range of hosts (from cold-blooded to warm-blooded animals), supporting that it can be implicated in various vertebrate-virus pathosystems. However, with equal availability of one of the four vertebrate hosts (calf, chicken, dog, and goat) proposed against human, Ae. albopictus significantly preferred human, supporting earlier data about its high degree of anthropophily. Multiple blood feeding was also reported in every combination (animal/human) offered to Ae. albopictus, enlightening the higher risks to spread an arbovirus to human population because of interrupted feeding. Such catholic behavior suggests that Ae. albopictus may act as a bridge vector for zoonotic viruses. Further epidemiological implications of this issue are discussed.


Applied and Environmental Microbiology | 2009

Climate and tick seasonality are predictors of Borrelia burgdorferi genotype distribution.

Anne G. Gatewood; Kelly A. Liebman; Gwenaël Vourc'h; Jonas Bunikis; Sarah A. Hamer; Roberto Cortinas; Forrest Melton; Paul Cislo; Uriel Kitron; Jean I. Tsao; Alan G. Barbour; Durland Fish; Maria A. Diuk-Wasser

ABSTRACT The blacklegged tick, Ixodes scapularis, is of significant public health importance as a vector of Borrelia burgdorferi, the agent of Lyme borreliosis. The timing of seasonal activity of each immature I. scapularis life stage relative to the next is critical for the maintenance of B. burgdorferi because larvae must feed after an infected nymph to efficiently acquire the infection from reservoir hosts. Recent studies have shown that some strains of B. burgdorferi do not persist in the primary reservoir host for more than a few weeks, thereby shortening the window of opportunity between nymphal and larval feeding that sustains their enzootic maintenance. We tested the hypothesis that climate is predictive of geographic variation in the seasonal activity of I. scapularis, which in turn differentially influences the distribution of B. burgdorferi genotypes within the geographic range of I. scapularis. We analyzed the relationships between climate, seasonal activity of I. scapularis, and B. burgdorferi genotype frequency in 30 geographically diverse sites in the northeastern and midwestern United States. We found that the magnitude of the difference between summer and winter daily temperature maximums was positively correlated with the degree of seasonal synchrony of the two immature stages of I. scapularis. Genotyping revealed an enrichment of 16S-23S rRNA intergenic spacer restriction fragment length polymorphism sequence type 1 strains relative to others at sites with lower seasonal synchrony. We conclude that climate-associated variability in the timing of I. scapularis host seeking contributes to geographic heterogeneities in the frequencies of B. burgdorferi genotypes, with potential consequences for Lyme borreliosis morbidity.


Experimental and Applied Acarology | 2013

Changing distributions of ticks: causes and consequences.

Elsa Léger; Gwenaël Vourc'h; Laurence Vial; Christine Chevillon; Karen D. McCoy

Today, we are witnessing changes in the spatial distribution and abundance of many species, including ticks and their associated pathogens. Evidence that these changes are primarily due to climate change, habitat modifications, and the globalisation of human activities are accumulating. Changes in the distribution of ticks and their invasion into new regions can have numerous consequences including modifications in their ecological characteristics and those of endemic species, impacts on the dynamics of local host populations and the emergence of human and livestock disease. Here, we review the principal causes for distributional shifts in tick populations and their consequences in terms of the ecological attributes of the species in question (i.e. phenotypic and genetic responses), pathogen transmission and disease epidemiology. We also describe different methodological approaches currently used to assess and predict such changes and their consequences. We finish with a discussion of new research avenues to develop in order to improve our understanding of these host–vector–pathogen interactions in the context of a changing world.


Applied and Environmental Microbiology | 2010

Ecological Factors Characterizing the Prevalence of Bacterial Tick-Borne Pathogens in Ixodes ricinus Ticks in Pastures and Woodlands

Lénaïg Halos; Séverine Bord; Violaine Cotté; Patrick Gasqui; David Abrial; Jacques Barnouin; Henri-Jean Boulouis; Muriel Vayssier-Taussat; Gwenaël Vourc'h

ABSTRACT Ecological changes are recognized as an important driver behind the emergence of infectious diseases. The prevalence of infection in ticks depends upon ecological factors that are rarely taken into account simultaneously. Our objective was to investigate the influences of forest fragmentation, vegetation, adult tick hosts, and habitat on the infection prevalence of three tick-borne bacteria, Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, and Rickettsia sp. of the spotted fever group, in questing Ixodes ricinus ticks, taking into account tick characteristics. Samples of questing nymphs and adults were taken from 61 pastures and neighboring woodlands in central France. The ticks were tested by PCR of pools of nymphs and individual adults. The individual infection prevalence was modeled using multivariate regression. The highest infection prevalences were found in adult females collected in woodland sites for B. burgdorferi sensu lato and A. phagocytophilum (16.1% and 10.7%, respectively) and in pasture sites for Rickettsia sp. (8.7%). The infection prevalence in nymphs was lower than 6%. B. burgdorferi sensu lato was more prevalent in woodlands than in pastures. Forest fragmentation favored B. burgdorferi sensu lato and A. phagocytophilum prevalence in woodlands, and in pastures, the B. burgdorferi sensu lato prevalence was favored by shrubby vegetation. Both results are probably because large amounts of edges or shrubs increase the abundance of small vertebrates as reservoir hosts. The Rickettsia sp. prevalence was maximal on pasture with medium forest fragmentation. Female ticks were more infected by B. burgdorferi sensu lato than males and nymphs in woodland sites, which suggests an interaction between the ticks and the bacteria. This study confirms the complexity of the tick-borne pathogen ecology. The findings support the importance of small vertebrates as reservoir hosts and make a case for further studies in Europe on the link between the composition of the reservoir host community and the infection prevalence in ticks.


Emerging Infectious Diseases | 2006

Detecting emerging diseases in farm animals through clinical observations.

Gwenaël Vourc'h; Victoria E. Bridges; Jane Gibbens; Brad D. De Groot; Lachlan McIntyre; Roger Poland; Jacques Barnouin

Clinical observations will allow early detection of emerging diseases in animal to enhance response time and capabilities.


International Journal for Parasitology | 2010

Introduced Siberian chipmunks are more heavily infested by ixodid ticks than are native bank voles in a suburban forest in France

Benoît Pisanu; Maud Marsot; Julie Marmet; Jean-Louis Chapuis; Denis Réale; Gwenaël Vourc'h

By serving as hosts for native vectors, introduced species can surpass native hosts in their role as major reservoirs of local pathogens. During a 4-year longitudinal study, we investigated factors that affected infestation by ixodid ticks on both introduced Siberian chipmunks Tamias sibiricus barberi and native bank voles Myodes glareolus in a suburban forest (Forêt de Sénart, Ile-de-France). Ticks were counted on adult bank voles and on adult and young chipmunks using regular monthly trapping sessions, and questing ticks were quantified by dragging. At the summer peak of questing Ixodes ricinus availability, the average tick load was 27-69 times greater on adult chipmunks than on adult voles, while average biomass per hectare of chipmunks and voles were similar. In adult chipmunks, individual effects significantly explained 31% and 24% of the total variance of tick larvae and nymph burdens, respectively. Male adult chipmunks harboured significantly more larvae and nymphs than adult females, and than juveniles born in spring and in summer. The higher tick loads, and more specifically the ratio of nymphs over larvae, observed in chipmunks may be caused by a higher predisposition--both in terms of susceptibility and exposure--to questing ticks. Tick burdens were also related to habitat and seasonal variation in age- and sex-related space use by both rodents. Introduced chipmunks may thus have an important role in the dynamics of local vector-borne pathogens compared with native reservoir hosts such as bank voles.


Applied and Environmental Microbiology | 2011

Introduced Siberian chipmunks (Tamias sibiricus barberi) harbor more-diverse Borrelia burgdorferi sensu lato genospecies than native bank voles (Myodes glareolus).

Maud Marsot; M. Sigaud; Jean-Louis Chapuis; Elisabeth Ferquel; Muriel Cornet; Gwenaël Vourc'h

ABSTRACT Little attention has been given in scientific literature to how introduced species may act as a new host for native infectious agents and modify the epidemiology of a disease. In this study, we investigated whether an introduced species, the Siberian chipmunk (Tamias sibiricus barberi), was a potentially new reservoir host for Borrelia burgdorferi sensu lato, the causative agent of Lyme disease. First, we ascertained whether chipmunks were infected by all of the B. burgdorferi sensu lato genospecies associated with rodents and available in their source of infection, questing nymphs. Second, we determined whether the prevalence and diversity of B. burgdorferi sensu lato in chipmunks were similar to those of a native reservoir rodent, the bank vole (Myodes glareolus). Our research took place between 2006 and 2008 in a suburban French forest, where we trapped 335 chipmunks and 671 voles and collected 743 nymphs of ticks that were questing for hosts by dragging on the vegetation. We assayed for B. burgdorferi sensu lato with ear biopsy specimens taken from the rodents and in nymphs using PCR and restriction fragment length polymorphism (RFLP). Chipmunks were infected by the three Borrelia genospecies that were present in questing nymphs and that infect rodents (B. burgdorferi sensu stricto, B. afzelii, and B. garinii). In contrast, voles hosted only B. afzelii. Furthermore, chipmunks were more infected (35%) than voles (16%). These results may be explained by the higher exposure of chipmunks, because they harbor more ticks, or by their higher tolerance of other B. burgdorferi sensu lato genospecies than of B. afzelii. If chipmunks are competent reservoir hosts for B. burgdorferi sensu lato, they may spill back B. burgdorferi sensu lato to native communities and eventually may increase the risk of Lyme disease transmission to humans.


American Journal of Tropical Medicine and Hygiene | 2012

Similarities in Leptospira Serogroup and Species Distribution in Animals and Humans in the Indian Ocean Island of Mayotte

Amélie Desvars; Florence Naze; Gwenaël Vourc'h; Eric Cardinale; Mathieu Picardeau; Alain Michault; Pascale Bourhy

Our objective was to identify local animal reservoirs of leptospirosis to explain the unusual features of Leptospira strains recently described among patients on the island of Mayotte. By means of a microscopic agglutination test using local clinical isolates, we found that 11.2% of black rats were seropositive to Leptospira, whereas 10.2% of flying foxes, 2% of lemurs, 93.1% of domestic dogs, and 87.5% of stray dogs were seropositive. As observed in humans, Mini was the main serogroup circulating in animals, whereas serogroup Icterohaemorrhagiae was absent. Using quantitative polymerase chain reaction, we also showed that 29.8% of rats carried leptospires in their kidneys. The sequencing of 16S rRNA gene sequences of Leptospira found in black rat kidneys identified four genomospecies (Leptospira borgpetersenii, Leptospira interrogans, Leptospira kirschneri, and L. borgpetersenii group B), which established black rats as the major source of leptospirosis transmission to humans. The origins of such a genetic diversity in Leptospira strains are discussed.


Parasitology | 2007

Local environmental factors characterizing Ixodes ricinus nymph abundance in grazed permanent pastures for cattle

Chloé Boyard; Jacques Barnouin; Patrick Gasqui; Gwenaël Vourc'h

Although Ixodes ricinus ticks are mainly associated with woodland, they are also present in open habitat such as pastures. The distribution of nymphal I. ricinus was monitored by drag sampling the vegetation in May-June 2003 on 61 grazed permanent pastures for cattle located in central France. After selecting explanatory variables from among a set of 155, tick abundance was modelled on the perimeter of the pasture using a negative binomial model that took into account data overdispersion. An abundant tree layer at the perimeter of the pasture associated with a high humidity before sampling greatly enhanced the average number of captured I. ricinus nymphs. The presence of apple or cherry trees around the pasture perimeter, the presence of trees or bushes at the pasture edge, woodland around the pasture and a high number of I. ricinus nymphs in the nearest woodland to the pasture were also favourable to nymph abundance in the pasture. The study highlighted that woodland vegetation associated with humidity and the presence of attractive foraging areas for tick hosts around the pasture played a key role in the abundance of I. ricinus. Finally, the results raised the question of whether and how transfer of ticks between woodland and grazed pastures occurs.

Collaboration


Dive into the Gwenaël Vourc'h's collaboration.

Top Co-Authors

Avatar

Patrick Gasqui

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jacques Barnouin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Muriel Vayssier-Taussat

École nationale vétérinaire d'Alfort

View shared research outputs
Top Co-Authors

Avatar

Jean-Louis Chapuis

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Amélie Chastagner

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Olivier Plantard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sarah Bonnet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Xavier Bailly

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maud Marsot

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge