Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gwendolyn M. Jang is active.

Publication


Featured researches published by Gwendolyn M. Jang.


Nature | 2012

Global landscape of HIV-human protein complexes

Stefanie Jäger; Peter Cimermancic; Natali Gulbahce; Jeffrey R. Johnson; Kathryn E. McGovern; Starlynn C. Clarke; Michael Shales; Gaelle Mercenne; Lars Pache; Kathy H. Li; Hilda Hernandez; Gwendolyn M. Jang; Shoshannah L. Roth; Eyal Akiva; John Marlett; Melanie Stephens; Iván D’Orso; Jason Fernandes; Marie Fahey; Cathal Sean Mahon; Anthony J. O’Donoghue; Aleksandar Todorovic; John H. Morris; David A. Maltby; Tom Alber; Gerard Cagney; Frederic D. Bushman; John A. T. Young; Sumit K. Chanda; Wesley I. Sundquist

Human immunodeficiency virus (HIV) has a small genome and therefore relies heavily on the host cellular machinery to replicate. Identifying which host proteins and complexes come into physical contact with the viral proteins is crucial for a comprehensive understanding of how HIV rewires the host’s cellular machinery during the course of infection. Here we report the use of affinity tagging and purification mass spectrometry to determine systematically the physical interactions of all 18 HIV-1 proteins and polyproteins with host proteins in two different human cell lines (HEK293 and Jurkat). Using a quantitative scoring system that we call MiST, we identified with high confidence 497 HIV–human protein–protein interactions involving 435 individual human proteins, with ∼40% of the interactions being identified in both cell types. We found that the host proteins hijacked by HIV, especially those found interacting in both cell types, are highly conserved across primates. We uncovered a number of host complexes targeted by viral proteins, including the finding that HIV protease cleaves eIF3d, a subunit of eukaryotic translation initiation factor 3. This host protein is one of eleven identified in this analysis that act to inhibit HIV replication. This data set facilitates a more comprehensive and detailed understanding of how the host machinery is manipulated during the course of HIV infection.


Cell Host & Microbe | 2015

Global Mapping of the Inc-Human Interactome Reveals that Retromer Restricts Chlamydia Infection

Kathleen Mirrashidi; Cherilyn A. Elwell; Erik Verschueren; Jeffrey R. Johnson; Andrew Frando; John Von Dollen; Oren S. Rosenberg; Natali Gulbahce; Gwendolyn M. Jang; Tasha Johnson; Stefanie Jäger; Anusha M. Gopalakrishnan; Jessica Sherry; Joe Dan Dunn; Andrew J. Olive; Bennett Penn; Michael Shales; Jeffery S. Cox; Michael N. Starnbach; Isabelle Derré; Raphael H. Valdivia; Nevan J. Krogan; Joanne N. Engel

Chlamydia trachomatis is a leading cause of genital and ocular infections for which no vaccine exists. Upon entry into host cells, C. trachomatis resides within a membrane-bound compartment—the inclusion—and secretes inclusion membrane proteins (Incs) that are thought to modulate the host-bacterium interface. To expand our understanding of Inc function(s), we subjected putative C. trachomatis Incs to affinity purification-mass spectroscopy (AP-MS). We identified Inc-human interactions for 38/58 Incs with enrichment in host processes consistent with Chlamydias intracellular life cycle. There is significant overlap between Inc targets and viral proteins, suggesting common pathogenic mechanisms among obligate intracellular microbes. IncE binds to sorting nexins (SNXs) 5/6, components of the retromer, which relocalizes SNX5/6 to the inclusion membrane and augments inclusion membrane tubulation. Depletion of retromer components enhances progeny production, revealing that retromer restricts Chlamydia infection. This study demonstrates the value of proteomics in unveiling host-pathogen interactions in genetically challenging microbes.


Molecular Cell | 2015

Global Mapping of Herpesvirus-Host Protein Complexes Reveals a Transcription Strategy for Late Genes

Zoe H. Davis; Erik Verschueren; Gwendolyn M. Jang; Kevin Kleffman; Jeffrey R. Johnson; Jimin Park; John Von Dollen; M. Cyrus Maher; Tasha Johnson; William Newton; Stefanie Jäger; Michael Shales; Julie Horner; Ryan D. Hernandez; Nevan J. Krogan; Britt A. Glaunsinger

Mapping host-pathogen interactions has proven instrumental for understanding how viruses manipulate host machinery and how numerous cellular processes are regulated. DNA viruses such as herpesviruses have relatively large coding capacity and thus can target an extensive network of cellular proteins. To identify the host proteins hijacked by this pathogen, we systematically affinity tagged and purified all 89 proteins of Kaposis sarcoma-associated herpesvirus (KSHV) from human cells. Mass spectrometry of this material identified over 500 virus-host interactions. KSHV causes AIDS-associated cancers, and its interaction network is enriched for proteins linked to cancer and overlaps with proteins that are also targeted by HIV-1. We found that the conserved KSHV protein ORF24 binds to RNA polymerase II and brings it to viral late promoters by mimicking and replacing cellular TATA-box-binding protein (TBP). This is required for herpesviral late gene expression, a complex and poorly understood phase of the viral lifecycle.


Methods | 2011

Purification and characterization of HIV–human protein complexes

Stefanie Jäger; Natali Gulbahce; Peter Cimermancic; Joshua Kane; Nanhai He; Seemay Chou; Iván D’Orso; Jason Fernandes; Gwendolyn M. Jang; Alan D. Frankel; Tom Alber; Qiang Zhou; Nevan J. Krogan

Abstract To fully understand how pathogens infect their host and hijack key biological processes, systematic mapping of intra-pathogenic and pathogen–host protein–protein interactions (PPIs) is crucial. Due to the relatively small size of viral genomes (usually around 10–100 proteins), generation of comprehensive host–virus PPI maps using different experimental platforms, including affinity tag purification-mass spectrometry (AP-MS) and yeast two-hybrid (Y2H) approaches, can be achieved. Global maps such as these provide unbiased insight into the molecular mechanisms of viral entry, replication and assembly. However, to date, only two-hybrid methodology has been used in a systematic fashion to characterize viral–host protein–protein interactions, although a deluge of data exists in databases that manually curate from the literature individual host–pathogen PPIs. We will summarize this work and also describe an AP-MS platform that can be used to characterize viral-human protein complexes and discuss its application for the HIV genome.


Molecular and Cellular Biology | 2012

Transition Step during Assembly of HIV Tat:P-TEFb Transcription Complexes and Transfer to TAR RNA

Iván D'Orso; Gwendolyn M. Jang; Alexander W. Pastuszak; Tyler B. Faust; Elizabeth Quezada; David S. Booth; Alan D. Frankel

ABSTRACT Transcription factors regulate eukaryotic RNA polymerase II (Pol II) activity by assembling and remodeling complexes at multiple steps in the transcription cycle. In HIV, we previously proposed a two-step model where the viral Tat protein first preassembles at the promoter with an inactive P-TEFb:7SK snRNP complex and later transfers P-TEFb to TAR on the nascent transcript, displacing the inhibitory snRNP and resulting in Pol II phosphorylation and stimulation of elongation. It is unknown how the Tat:P-TEFb complex transitions to TAR to activate the P-TEFb kinase. Here, we show that P-TEFb artificially recruited to the nascent transcript is not competent for transcription but rather remains inactive due to its assembly with the 7SK snRNP. Tat supplied in trans is able to displace the kinase inhibitor Hexim1 from the snRNP and activate P-TEFb, thereby uncoupling Tat requirements for kinase activation and TAR binding. By combining comprehensive mutagenesis of Tat with multiple cell-based reporter assays that probe the activity of Tat in different arrangements, we genetically defined a transition step in which preassembled Tat:P-TEFb complexes switch to TAR. We propose that a conserved network of residues in Tat has evolved to control this transition and thereby switch the host elongation machinery to viral transcription.


Scientific Reports | 2017

PJA2 ubiquitinates the HIV-1 Tat protein with atypical chain linkages to activate viral transcription

Tyler B. Faust; Yang Li; Gwendolyn M. Jang; Jeffrey R. Johnson; Shumin Yang; Amit Weiss; Nevan J. Krogan; Alan D. Frankel

Transcription complexes that assemble at the HIV-1 promoter efficiently initiate transcription but generate paused RNA polymerase II downstream from the start site. The virally encoded Tat protein hijacks positive transcription elongation factor b (P-TEFb) to phosphorylate and activate this paused polymerase. In addition, Tat undergoes a series of reversible post-translational modifications that regulate distinct steps of the transcription cycle. To identify additional functionally important Tat cofactors, we performed RNAi knockdowns of sixteen previously identified Tat interactors and found that a novel E3 ligase, PJA2, ubiquitinates Tat in a non-degradative manner and specifically regulates the step of HIV transcription elongation. Interestingly, several different lysine residues in Tat can function as ubiquitin acceptor sites, and variable combinations of these lysines support both full transcriptional activity and viral replication. Further, the polyubiquitin chain conjugated to Tat by PJA2 can itself be assembled through variable ubiquitin lysine linkages. Importantly, proper ubiquitin chain assembly by PJA2 requires that Tat first binds its P-TEFb cofactor. These results highlight that both the Tat substrate and ubiquitin modification have plastic site usage, and this plasticity is likely another way in which the virus exploits the host molecular machinery to expand its limited genetic repertoire.


eLife | 2018

The HIV-1 tat protein recruits a ubiquitin ligase to reorganize the 7SK snRNP for transcriptional activation

Tyler B. Faust; Yang Li; Curtis W. Bacon; Gwendolyn M. Jang; Amit Weiss; Bhargavi Jayaraman; Billy W. Newton; Nevan J. Krogan; Iván D'Orso; Alan D. Frankel

The HIV-1 Tat protein hijacks P-TEFb kinase to activate paused RNA polymerase II (RNAP II) at the viral promoter. Tat binds additional host factors, but it is unclear how they regulate RNAP II elongation. Here, we identify the cytoplasmic ubiquitin ligase UBE2O as critical for Tat transcriptional activity. Tat hijacks UBE2O to ubiquitinate the P-TEFb kinase inhibitor HEXIM1 of the 7SK snRNP, a fraction of which also resides in the cytoplasm bound to P-TEFb. HEXIM1 ubiquitination sequesters it in the cytoplasm and releases P-TEFb from the inhibitory 7SK complex. Free P-TEFb then becomes enriched in chromatin, a process that is also stimulated by treating cells with a CDK9 inhibitor. Finally, we demonstrate that UBE2O is critical for P-TEFb recruitment to the HIV-1 promoter. Together, the data support a unique model of elongation control where non-degradative ubiquitination of nuclear and cytoplasmic 7SK snRNP pools increases P-TEFb levels for transcriptional activation.


Molecular Cell | 2018

An Mtb-Human Protein-Protein Interaction Map Identifies a Switch between Host Antiviral and Antibacterial Responses

Bennett Penn; Zoe Netter; Jeffrey R. Johnson; John Von Dollen; Gwendolyn M. Jang; Tasha Johnson; Yamini M. Ohol; Cyrus Maher; Samantha L. Bell; Kristina Geiger; Guillaume Golovkine; Xiaotang Du; Alex Choi; Trevor Parry; Bhopal Mohapatra; Matthew D. Storck; Hamid Band; Chen Chen; Stefanie Jäger; Michael Shales; Dan A. Portnoy; Ryan D. Hernandez; Laurent Coscoy; Jeffery S. Cox; Nevan J. Krogan

Although macrophages are armed with potent antibacterial functions, Mycobacterium tuberculosis (Mtb) replicates inside these innate immune cells. Determinants of macrophage intrinsic bacterial control, and the Mtb strategies to overcome them, are poorly understood. To further study these processes, we used an affinity tag purification mass spectrometry (AP-MS) approach to identify 187 Mtb-human protein-protein interactions (PPIs) involving 34 secreted Mtb proteins. This interaction map revealed two factors involved in Mtb pathogenesis-the secreted Mtb protein, LpqN, and its binding partner, the human ubiquitin ligase CBL. We discovered that an lpqN Mtb mutant is attenuated in macrophages, but growth is restored when CBL is removed. Conversely, Cbl-/- macrophages are resistant to viral infection, indicating that CBL regulates cell-intrinsic polarization between antibacterial and antiviral immunity. Collectively, these findings illustrate the utility of this Mtb-human PPI map for developing a deeper understanding of the intricate interactions between Mtb and its host.


The EMBO Journal | 2018

CRL4AMBRA1 targets Elongin C for ubiquitination and degradation to modulate CRL5 signaling

Si‐Han Chen; Gwendolyn M. Jang; Ruth Hüttenhain; David E. Gordon; Dan Du; Billy W. Newton; Jeffrey R. Johnson; Joseph Hiatt; Judd F. Hultquist; Tasha Johnson; Yi‐Liang Liu; Lily Burton; Jordan Ye; Kurt M. Reichermeier; Robert M. Stroud; Alexander Marson; Jayanta Debnath; John D. Gross; Nevan J. Krogan

Multi‐subunit cullin‐RING ligases (CRLs) are the largest family of ubiquitin E3 ligases in humans. CRL activity is tightly regulated to prevent unintended substrate degradation or autocatalytic degradation of CRL subunits. Using a proteomics strategy, we discovered that CRL4AMBRA1 (CRL substrate receptor denoted in superscript) targets Elongin C (ELOC), the essential adapter protein of CRL5 complexes, for polyubiquitination and degradation. We showed that the ubiquitin ligase function of CRL4AMBRA1 is required to disrupt the assembly and attenuate the ligase activity of human CRL5SOCS3 and HIV‐1 CRL5VIF complexes as AMBRA1 depletion leads to hyperactivation of both CRL5 complexes. Moreover, CRL4AMBRA1 modulates interleukin‐6/STAT3 signaling and HIV‐1 infectivity that are regulated by CRL5SOCS3 and CRL5VIF, respectively. Thus, by discovering a substrate of CRL4AMBRA1, ELOC, the shared adapter of CRL5 ubiquitin ligases, we uncovered a novel CRL cross‐regulation pathway.


Cancer Discovery | 2018

Multiple Routes to Oncogenesis are Promoted by the Human Papillomavirus-Host Protein Network

Manon Eckhardt; Wei Zhang; Andrew M. Gross; John Von Dollen; Jeffrey R. Johnson; Kathleen Franks-Skiba; Danielle L. Swaney; Tasha Johnson; Gwendolyn M. Jang; Priya S. Shah; Toni M. Brand; Jacques Archambault; Jason F. Kreisberg; Jennifer R. Grandis; Trey Ideker; Nevan J. Krogan

We have mapped a global network of virus-host protein interactions by purification of the complete set of human papillomavirus (HPV) proteins in multiple cell lines followed by mass spectrometry analysis. Integration of this map with tumor genome atlases shows that the virus targets human proteins frequently mutated in HPV- but not HPV+ cancers, providing a unique opportunity to identify novel oncogenic events phenocopied by HPV infection. For example, we find that the NRF2 transcriptional pathway, which protects against oxidative stress, is activated by interaction of the NRF2 regulator KEAP1 with the viral protein E1. We also demonstrate that the L2 HPV protein physically interacts with the RNF20/40 histone ubiquitination complex and promotes tumor cell invasion in an RNF20/40-dependent manner. This combined proteomic and genetic approach provides a systematic means to study the cellular mechanisms hijacked by virally induced cancers.Significance: In this study, we created a protein-protein interaction network between HPV and human proteins. An integrative analysis of this network and 800 tumor mutation profiles identifies multiple oncogenesis pathways promoted by HPV interactions that phenocopy recurrent mutations in cancer, yielding an expanded definition of HPV oncogenic roles. Cancer Discov; 8(11); 1474-89. ©2018 AACR. This article is highlighted in the In This Issue feature, p. 1333.

Collaboration


Dive into the Gwendolyn M. Jang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tasha Johnson

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Shales

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iván D'Orso

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge