Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey R. Johnson is active.

Publication


Featured researches published by Jeffrey R. Johnson.


Science | 2004

In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars

Steven W. Squyres; John P. Grotzinger; Raymond E. Arvidson; James F. Bell; Wendy M. Calvin; Philip R. Christensen; Benton C. Clark; Jeffrey Crisp; William H. Farrand; K. E. Herkenhoff; Jeffrey R. Johnson; G. Klingelhöfer; Andrew H. Knoll; Scott M. McLennan; Harry Y. McSween; Richard V. Morris; John W. Rice; Renate Rieder; Larry Soderblom

Sedimentary rocks at Eagle crater in Meridiani Planum are composed of fine-grained siliciclastic materials derived from weathering of basaltic rocks, sulfate minerals (including magnesium sulfate and jarosite) that constitute several tens of percent of the rock by weight, and hematite. Cross-stratification observed in rock outcrops indicates eolian and aqueous transport. Diagenetic features include hematite-rich concretions and crystal-mold vugs. We interpret the rocks to be a mixture of chemical and siliciclastic sediments with a complex diagenetic history. The environmental conditions that they record include episodic inundation by shallow surface water, evaporation, and desiccation. The geologic record at Meridiani Planum suggests that conditions were suitable for biological activity for a period of time in martian history.


Science | 2013

Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars

P.-Y. Meslin; O. Gasnault; Olivier Forni; S. Schröder; A. Cousin; G. Berger; S. M. Clegg; J. Lasue; S. Maurice; Violaine Sautter; S. Le Mouélic; Roger C. Wiens; C. Fabre; W. Goetz; David L. Bish; Nicolas Mangold; Bethany L. Ehlmann; N. Lanza; A.-M. Harri; R. B. Anderson; E. B. Rampe; Timothy H. McConnochie; P. Pinet; Diana L. Blaney; R. Leveille; D. Archer; B. L. Barraclough; Steve Bender; D. Blake; Jennifer G. Blank

The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.


Geophysical Research Letters | 1999

Dust devil vortices seen by the Mars Pathfinder Camera

Stephen M. Metzger; James R. Carr; Jeffrey R. Johnson; Timothy J. Parker; Mark T. Lemmon

Discovery of dust devil vortices in Mars Pathfinder (MPF) images reveals a dust entrainment mechanism at work on Mars. Scattering of visible light by dust in the Martian atmosphere creates a pronounced haze, preventing conventional image processing from displaying dust plumes. Spectral differencing techniques have enhanced five localized dust plumes from the general haze in images acquired near midday, which we determine to be dust devils. Processing of 440 nm images highlights dust devils as distinct occultation features against the horizon. The dust devils are interpreted to be 14–79 m wide, 46–350 m tall, travel at 0.5–4.6 m/s, with dust loading of 7E-5 kg m-3, relative to the general haze of 9E-8 kg m-3, and total particulate transport of 2.2–700 kg. The vortices match predictions from terrestrial analog studies.


Science | 2012

Ancient Impact and Aqueous Processes at Endeavour Crater, Mars

Steven W. Squyres; Raymond E. Arvidson; James F. Bell; F. Calef; B. C. Clark; Barbara A. Cohen; L.A. Crumpler; P. A. de Souza; William H. Farrand; Ralf Gellert; J. A. Grant; K. E. Herkenhoff; Joel A. Hurowitz; Jeffrey R. Johnson; Bradley L. Jolliff; Andrew H. Knoll; R. Li; Scott M. McLennan; D. W. Ming; D. W. Mittlefehldt; T. J. Parker; G. Paulsen; Melissa S. Rice; Steven W. Ruff; Christian Schröder; Albert S. Yen; K. Zacny

Martian Veins After more than 7 years of traveling across the Meridiani Planum region of Mars, the Mars Exploration rover Opportunity reached the Endeavour Crater, a 22-km-impact crater made of materials older than those previously investigated by the rover. Squyres et al. (p. 570) present a comprehensive analysis of the rim of this crater. Localized zinc enrichments that provide evidence for hydrothermal alteration and gypsum-rich veins that were precipitated from liquid water at a relatively low temperature provide a compelling case for aqueous alteration processes in this area at ancient times. Analysis of data from the Mars Exploration Rover Opportunity provides evidence for past water flow near an ancient crater. The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region.


Journal of Geophysical Research | 2014

Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars

M. Nachon; Samuel Michael Clegg; N. Mangold; Susanne Schröder; L. C. Kah; Gilles Dromart; A. M. Ollila; Jeffrey R. Johnson; D. Z. Oehler; John C. Bridges; S. Le Mouélic; O. Forni; Roger C. Wiens; R. B. Anderson; Diana L. Blaney; James F. Bell; B. C. Clark; A. Cousin; M. D. Dyar; Bethany L. Ehlmann; C. Fabre; O. Gasnault; John P. Grotzinger; J. Lasue; E. Lewin; R. Leveille; Scott M. McLennan; Sylvestre Maurice; P.-Y. Meslin; W. Rapin

The Curiosity rover has analyzed abundant light-toned fracture-fill material within the Yellowknife Bay sedimentary deposits. The ChemCam instrument, coupled with Mastcam and ChemCam/Remote Micro Imager images, was able to demonstrate that these fracture fills consist of calcium sulfate veins, many of which appear to be hydrated at a level expected for gypsum and bassanite. Anhydrite is locally present and is found in a location characterized by a nodular texture. An intricate assemblage of veins crosses the sediments, which were likely formed by precipitation from fluids circulating through fractures. The presence of veins throughout the entire similar to 5 m thick Yellowknife Bay sediments suggests that this process occurred well after sedimentation and cementation/lithification of those sediments. The sulfur-rich fluids may have originated in previously precipitated sulfate-rich layers, either before the deposition of the Sheepbed mudstones or from unrelated units such as the sulfates at the base of Mount Sharp. The occurrence of these veins after the episodes of deposition of fluvial sediments at the surface suggests persistent aqueous activity in relatively nonacidic conditions.


Journal of Geophysical Research | 2002

Thermal infrared spectroscopy of experimentally shocked anorthosite and pyroxenite: Implications for remote sensing of Mars

Jeffrey R. Johnson; Friedrich Hörz; Paul G. Lucey; Philip R. Christensen

We performed shock recovery experiments at JSC (17-63 GPa) on samples of Stillwater pyroxenite and anorthosite and acquired their thermal infrared spectra (3-50 micron) to investigate the degradation of spectral features at high pressures. Additional information is contained in the original extended abstract.


Journal of Geophysical Research | 1999

Preliminary results on photometric properties of materials at the Sagan Memorial Station, Mars

Jeffrey R. Johnson; Randolph L. Kirk; Laurence A. Soderblom; Lisa R. Gaddis; Robert J. Reid; Daniel T. Britt; Peter K. Smith; Mark T. Lemmon; Nicolas Thomas; James F. Bell; Nathan T. Bridges; Robert S. Anderson; K. E. Herkenhoff; J. N. Maki; Scott L. Murchie; Andreas Dummel; R. Jaumann; F. Trauthan; Gabriele Arnold

Reflectance measurements of selected rocks and soils over a wide range of illumination geometries obtained by the Imager for Mars Pathfinder (IMP) camera provide constraints on interpretations of the physical and mineralogical nature of geologic materials at the landing site. The data sets consist of (1) three small “photometric spot” subframed scenes, covering phase angles from 20° to 150°; (2) two image strips composed of three subframed images each, located along the antisunrise and antisunset lines (photometric equator), covering phase angles from ∼0° to 155°; and (3) full-image scenes of the rock “Yogi,” covering phase angles from 48° to 100°. Phase functions extracted from calibrated data exhibit a dominantly backscattering photometric function, consistent with the results from the Viking lander cameras. However, forward scattering behavior does appear at phase angles >140°, particularly for the darker gray rock surfaces. Preliminary efforts using a Hapke scattering model are useful in comparing surface properties of different rock and soil types but are not well constrained, possibly due to the incomplete phase angle availability, uncertainties related to the photometric function of the calibration targets, and/or the competing effects of diffuse and direct lighting. Preliminary interpretations of the derived Hapke parameters suggest that (1) red rocks can be modeled as a mixture of gray rocks with a coating of bright and dark soil or dust, and (2) gray rocks have macroscopically smoother surfaces composed of microscopically homogeneous, clear materials with little internal scattering, which may imply a glass-like or varnished surface.


Journal of Geophysical Research | 2006

Overview of the Microscopic Imager Investigation during Spirit's first 450 sols in Gusev crater

K. E. Herkenhoff; S. W. Squyres; Robert S. Anderson; Brent A. Archinal; Raymond E. Arvidson; J. M. Barrett; Kris J. Becker; James F. Bell; Charles John Budney; Nathalie A. Cabrol; Mary G. Chapman; Debbie Cook; Bethany L. Ehlmann; Jack D. Farmer; Brenda J. Franklin; Lisa R. Gaddis; D. M. Galuszka; Patricia Garcia; Trent M. Hare; Elpitha Howington-Kraus; Jeffrey R. Johnson; Sarah Stewart Johnson; K. M. Kinch; Randolph L. Kirk; Ella Mae Lee; Craig Leff; Mark T. Lemmon; M. B. Madsen; J. N. Maki; Kevin F. Mullins

The Microscopic Imager (MI) on the Mars Exploration Rover Spirit has returned images of Mars with higher resolution than any previous camera system, allowing detailed petrographic and sedimentological studies of the rocks and soils at the Gusev landing site. Designed to simulate a geologists hand lens, the MI is mounted on Spirits instrument arm and can resolve objects 0.1 mm in size or larger. This paper provides an overview of MI operations, data calibration, processing, and analysis of MI data returned during the first 450 sols (Mars days) of the Spirit landed mission. The primary goal of this paper is to facilitate further analyses of MI data by summarizing the methods used to acquire and process the data, the radiometric and geometric accuracy of MI data products, and the availability of archival products. In addition, scientific results of the MI investigation are summarized. MI observations show that poorly sorted soils are common in Gusev crater, although aeolian bedforms have well-sorted coarse sand grains on their surfaces. Abraded surfaces of plains rocks show igneous textures, light-toned veins or fracture-filling minerals, and discrete coatings. The rocks in the Columbia Hills have a wide variety of granular textures, consistent with volcaniclastic or impact origins. Case hardening and submillimeter veins observed in the rocks as well as soil crusts and cemented clods imply episodic subsurface aqueous fluid movement, which has altered multiple geologic units in the Columbia Hills. The MI also monitored Spirits solar panels and the magnets on the rovers deck.


Journal of Geophysical Research | 2008

Veneers, rinds, and fracture fills: Relatively late alteration of sedimentary rocks at Meridiani Planum, Mars

Andrew H. Knoll; Brad L. Jolliff; William H. Farrand; James F. Bell; Benton C. Clark; Ralf Gellert; M. P. Golombek; John P. Grotzinger; Kenneth E. Herkenhoff; Jeffrey R. Johnson; Scott M. McLennan; Richard V. Morris; Steven W. Squyres; Robert J. Sullivan; Nicholas J. Tosca; Albert S. Yen; Zoe Learner

Veneers and thicker rinds that coat outcrop surfaces and partially cemented fracture fills formed perpendicular to bedding document relatively late stage alteration of ancient sedimentary rocks at Meridiani Planum, Mars. The chemistry of submillimeter thick, buff-colored veneers reflects multiple processes at work since the establishment of the current plains surface. Veneer composition is dominated by the mixing of silicate-rich dust and sulfate-rich outcrop surface, but it has also been influenced by mineral precipitation, including NaCl, and possibly by limited physical or chemical weathering of sulfate minerals. Competing processes of chemical alteration (perhaps mediated by thin films of water or water vapor beneath blanketing soils) and sandblasting of exposed outcrop surfaces determine the current distribution of veneers. Dark-toned rinds several millimeters thick reflect more extensive surface alteration but also indicate combined dust admixture, halite precipitation, and possible minor sulfate removal. Cemented fracture fills that are differentially resistant to erosion occur along the margins of linear fracture systems possibly related to impact. These appear to reflect limited groundwater activity along the margins of fractures, cementing mechanically introduced fill derived principally from outcrop rocks. The limited thickness and spatial distribution of these three features suggest that aqueous activity has been rare and transient or has operated at exceedingly low rates during the protracted interval since outcropping Meridiani strata were exposed on the plains surface.


Icarus | 2003

Dust deposition at the Mars Pathfinder landing site: observations and modeling of visible/near-infrared spectra

Jeffrey R. Johnson; William M. Grundy; Mark T. Lemmon

Abstract Temporal variations in the visible/near-infrared reflectance spectra of the radiometric calibration targets on the Mars Pathfinder (MPF) lander obtained by the Imager for Mars Pathfinder (IMP) camera reveal the effects of aeolian dust deposition at the MPF site throughout the mission. Sky brightness models in combination with two-layer radiative transfer models were used with these data to track changes in dust opacity on the radiometric calibration targets (RCTs) to constrain the dust deposition rate and the spectral properties of the deposited dust. Two-layer models were run assuming both linear and nonlinear dust accumulation rates, and suggest that RCT dust optical depth at the end of the 83-sol mission was 0.08 to 0.16, or on the order of 5- to 10-μm thickness for plausible values for dust porosity and grain size. These values correspond to dust fall rates of about 20–45 μm per Earth year, consistent with previous studies of dust deposition on Mars. The single scattering albedos of the dust derived from the models fall between those previously determined for atmospheric dust and bright soils. Comparisons of relative reflectance spectra calibrated using observed RCT radiances from late in the mission versus using radiances from modeled (dust-free) RCTs also reveal distinct spectral differences consistent with dust on the RCTs. Temporal variations in RCT dust opacity are not clearly linked to known passages of vortices at the MPF site, but overall suggest that deposition of dust onto the targets by local dust devils may be favored over erosion. Analyses of temporal changes in visible/near-infrared spectra will provide valuable information for future missions by constraining how dust deposition affects landed spacecraft operability (e.g., solar power availability), instrument calibration, and interpretations of surface mineralogy and composition.

Collaboration


Dive into the Jeffrey R. Johnson's collaboration.

Top Co-Authors

Avatar

James F. Bell

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Roger C. Wiens

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Raymond E. Arvidson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

O. Gasnault

University of Toulouse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana L. Blaney

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

John P. Grotzinger

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Cousin

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge