Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. B. Singh is active.

Publication


Featured researches published by H. B. Singh.


Journal of Geophysical Research | 1996

Origin of ozone and NOx in the tropical troposphere: A photochemical analysis of aircraft observations over the South Atlantic basin

Daniel J. Jacob; E. G. Heikes; Song-Miao Fan; Jennifer A. Logan; Denise L. Mauzerall; J. D. Bradshaw; H. B. Singh; G. L. Gregory; Robert W. Talbot; D. R. Blake; G. W. Sachse

The photochemistry of the troposphere over the South Atlantic basin is examined by modeling of aircraft observations up to 12-km altitude taken during the TRACE A expedition in September–October 1992. A close balance is found in the 0 to 12-km column between photochemical production and loss of O3, with net production at high altitudes compensating for weak net loss at low altitudes. This balance implies that O3 concentrations in the 0–12 km column can be explained solely by in situ photochemistry; influx from the stratosphere is negligible. Simulation of H2O2, CH3OOH, and CH2O concentrations measured aboard the aircraft lends confidence in the computations of O3 production and loss rates, although there appears to be a major gap in current understanding of CH2O chemistry in the marine boundary layer. The primary sources of NOx over the South Atlantic Basin appear to be continental (biomass burning, lightning, soils). There is evidence that NOx throughout the 0 to 12-km column is recycled from its oxidation products rather than directly transported from its primary sources. There is also evidence for rapid conversion of HNO3 to NOx in the upper troposphere by a mechanism not included in current models. A general representation of the O3 budget in the tropical troposphere is proposed that couples the large-scale Walker circulation and in situ photochemistry. Deep convection in the rising branches of the Walker circulation injects NOx from combustion, soils, and lightning to the upper troposphere, leading to O3 production; eventually, the air subsides and net O3 loss takes place in the lower troposphere, closing the O3 cycle. This scheme implies a great sensitivity of the oxidizing power of the atmosphere to NOx emissions in the tropics.


Journal of Geophysical Research | 1994

Acetone in the atmosphere: Distribution, sources, and sinks

H. B. Singh; D. O'Hara; D. Herlth; W. Sachse; D. R. Blake; J. D. Bradshaw; M. Kanakidou; Paul J. Crutzen

Acetone (CH3COCH3) was found to be the dominant nonmethane organic species present in the atmosphere sampled primarily over eastern Canada (0–6 km, 35°–65°N) during ABLE3B (July to August 1990). A concentration range of 357 to 2310 ppt (= 10−12 v/v) with a mean value of 1140±413 ppt was measured. Under extremely clean conditions, generally involving Arctic flows, lowest (background) mixing ratios of 550±100 ppt were present in much of the troposphere studied. Correlations between atmospheric mixing ratios of acetone and select species such as C2H2, CO, C3H8, C2C14 and isoprene provided important clues to its possible sources and to the causes of its atmospheric variability. Biomass burning as a source of acetone has been identified for the first time. By using atmospheric data and three-dimensional photochemical models, a global acetone source of 40–60 Tg (= 1012 g)/yr is estimated to be present. Secondary formation from the atmospheric oxidation of precursor hydrocarbons (principally propane, isobutane, and isobutene) provides the single largest source (51%). The remainder is attributable to biomass burning (26%), direct biogenic emissions (21%), and primary anthropogenic emissions (3%). Atmospheric removal of acetone is estimated to be due to photolysis (64%), reaction with OH radicals (24%), and deposition (12%). Model calculations also suggest that acetone photolysis contributed significantly to PAN formation (100–200 ppt) in the middle and upper troposphere of the sampled region and may be important globally. While the source-sink equation appears to be roughly balanced, much more atmospheric and source data, especially from the southern hemisphere, are needed to reliably quantify the atmospheric budget of acetone.


Journal of Geophysical Research | 1998

Photochemistry in biomass burning plumes and implications for tropospheric ozone over the tropical South Atlantic

Denise L. Mauzerall; Jennifer A. Logan; Daniel J. Jacob; Bruce E. Anderson; D. R. Blake; J. D. Bradshaw; Brian G. Heikes; G. W. Sachse; H. B. Singh; Bob Talbot

Photochemistry occuring in biomass burning plumes over the tropical south Atlantic is analyzed using data collected during the Transport and Atmospheric Chemistry Near the Equator-Atlantic aircraft expedition conducted during the tropical dry season in September 1992 and a photochemical point model. Enhancement ratios (ΔY/ΔX, where Δ indicates the enhancement of a compound in the plume above the local background mixing ratio, Y are individual hydrocarbons, CO, O3, N2O, HNO3, peroxyacetyl nitrate (PAN), CH2O, acetone, H2O2, CH3OOH, HCOOH, CH3COOH or aerosols and X is CO or CO2) are reported as a function of plume age inferred from the progression of Δnon-methane hydrocarbons/ΔCO enhancement ratios. Emission, formation, and loss of species in plumes can be diagnosed from progression of enhancement ratios from fresh to old plumes. O3 is produced in plumes over at least a 1 week period with mean ΔO3/ΔCO = 0.7 in old plumes. However, enhancement ratios in plumes can be influenced by changing background mixing ratios and by photochemical loss of CO. We estimate a downward correction of ∼20% in enhancement ratios in old plumes relative to ΔCO to correct for CO loss. In a case study of a large persistent biomass burning plume at 4-km we found elevated concentrations of PAN in the fresh plume. The degradation of PAN helped maintain NOx mixing ratios in the plume where, over the course of a week, PAN was converted to HNO3. Ozone production in the plume was limited by the availability of NOx, and because of the short lifetime of O3 at 4-km, net ozone production in the plume was negligible. Within the region, the majority of O3 production takes place in air above median CO concentration, indicating that most O3 production occurs in plumes. Scaling up from the mean observed ΔO3/ΔCO in old plumes, we estimate a minimum regional O3 production of 17×1010molecules O3 cm−2 s−1. This O3 production rate is sufficient to fully explain the observed enhancement in tropospheric O3 over the tropical South Atlantic during the dry season.


Journal of Geophysical Research | 1996

Assessment of ozone photochemistry in the western North Pacific as inferred from PEM-West A observations during the fall 1991

D. D. Davis; J. H. Crawford; G. Chen; W. L. Chameides; Shaw-Chen Liu; J. D. Bradshaw; S. T. Sandholm; G. W. Sachse; G. L. Gregory; Bruce E. Anderson; J. Barrick; A. S. Bachmeier; J. E. Collins; Edward V. Browell; D. R. Blake; Scott K. Rowland; Y. Kondo; H. B. Singh; Robert W. Talbot; Brian G. Heikes; John T. Merrill; José F. Rodríguez; Reginald E. Newell

This study examines the influence of photochemical processes on ozone distributions in the western North Pacific. The analysis is based on data generated during NASAs western Pacific Exploratory Mission (PEM-West A) during the fall of 1991. Ozone trends were best described in terms of two geographical domains: the western North Pacific rim (WNPR) and the western tropical North Pacific (WTNP). For both geographical regions, ozone photochemical destruction, D(O3), decreased more rapidly with altitude than did photochemical formation, F(O3). Thus the ozone tendency, P(O3), was typically found to be negative for z 6–8 km. For nearly all altitudes and latitudes, observed nonmethane hydrocarbon (NMHC) levels were shown to be of minor importance as ozone precursor species. Air parcel types producing the largest positive values of P(O3) included fresh continental boundary layer (BL) air and high-altitude (z > 7 km) parcels influenced by deep convection/lightning. Significant negative P(O3) values were found when encountering clean marine BL air or relatively clean lower free-tropospheric air. Photochemical destruction and formation fluxes for the Pacific rim region were found to exceed average values cited for marine dry deposition and stratospheric injection in the northern hemisphere by nearly a factor of 6. This region was also found to be in near balance with respect to column-integrated O3 photochemical production and destruction. By contrast, for the tropical regime column-integrated O3 showed photochemical destruction exceeding production by nearly 80%. Both transport of O3 rich midlatitude air into the tropics as well as very high-altitude (10–17 km) photochemical O3 production were proposed as possible additional sources that might explain this estimated deficit. Results from this study further suggest that during the fall time period, deep convection over Asia and Malaysia/Indonesia provided a significant source of high-altitude NOx to the western Pacific. Given that the high-altitude NOx lifetime is estimated at between 3 and 9 days, one would predict that this source added significantly to high altitude photochemical O3 formation over large areas of the western Pacific. When viewed in terms of strong seasonal westerly flow, its influence would potentially span a large part of the Pacific.


Journal of Geophysical Research | 1996

Low ozone in the marine boundary layer of the tropical Pacific Ocean: Photochemical loss, chlorine atoms, and entrainment

H. B. Singh; G. L. Gregory; Bruce E. Anderson; Edward V. Browell; G. W. Sachse; D. D. Davis; J. H. Crawford; J. D. Bradshaw; Robert W. Talbot; D. R. Blake; Donald C. Thornton; Reginald E. Newell; John T. Merrill

Aircraft measurements of ozone, its key precursors, and a variety of chemical tracers were made in the troposphere of the western and central Pacific in October 1991. These data are presented and analyzed to examine the occurrence of low ozone concentrations in the remote marine boundary layer of the tropical and equatorial Pacific Ocean. The data from these flights out of Guam, covering an area extending from the equator to 20oN and from south of the Philippines to Hawaii, show average 0 3 concentrations as low as 8-9 ppb (ppb - 10 -9 v/v) at altitudes of 0.3-0.5 km in the boundary layer. Individual measurements as low as 2-5 ppb were recorded. Low 03 concentrations do not always persist in space and time. High 03, generally associated with the transport of upper tropospheric air, was also encountered in the boundary layer. In practically all cases, 0 3 increased to values as large as 25-30 ppb within 2 km above the boundary layer top. Steady state model computations are used to suggest that these low 03 concentrations are a result of net photochemical 03 destruction in a low NO environment, sea surface deposition, and low net entrainment rates (3.6 _+ 1.7 mm s -x7f) from the free troposphere. Day/night measurements of select organic species (e.g., ethane, propane, C2C14) suggest that C1 atom concentrations in the vicinity of 105 molecules cm -3 may be present in the marine boundary layer in the early morning hours. This C1 atom abundance can only be rationalized if sea-salt aerosols release active chlorine (C12 or HOC1) to the gas phase when exposed to sunlight. These C1 atom concentrations, however, are still insufficient, and halogen chemistry is not likely to be an important contributor to the observed low 03.


Journal of Geophysical Research | 1996

Reactive nitrogen and ozone over the western Pacific: Distribution, partitioning, and sources

H. B. Singh; D. Herlth; R. Kolyer; L. Salas; J. D. Bradshaw; S. T. Sandholm; D. D. Davis; J. H. Crawford; Y. Kondo; M. Koike; Robert W. Talbot; G. L. Gregory; G. W. Sachse; Edward V. Browell; D. R. Blake; F. S. Rowland; Reginald E. Newell; John T. Merrill; Brian G. Heikes; S. C. Liu; Paul J. Crutzen; M. Kanakidou

Measurements of important reactive nitrogen species (NO, NO2, HNO3, PAN, PPN, NO3−, NOy), C1 to C6 hydrocarbons, O3, chemical tracers (C2Cl4, CO), and meteorological parameters were made in the troposphere (0 to 12 km) over the western Pacific (0°–50°N) during the Pacific Exploratory Mission-West A campaign (September–October 1991). Under clean conditions, mixing ratios of NO, NO2, NOy, and O3 increased with altitude and showed a distinct latitudinal gradient. PAN showed a midtropospheric maximum, while nitric acid mixing ratios were generally highest near the surface. Measured NOy concentrations were significantly greater than the sum of individually measured nitrogen species (mainly NOx, PAN, and HNO3), suggesting that a large fraction of reactive nitrogen present in the atmosphere is made up of hitherto unknown species. This shortfall was larger in the tropics (≈65%) compared to midlatitudes (≈40%) and was minimal in air masses with high HNO3 mixing ratios (>100 ppt). A global three-dimensional photochemical model has been used to compare observations with predictions and to assess the significance of major sources. It is possible that the tropical lightning source is much greater than commonly assumed, and both lightning source and its distribution remain a major area of uncertainty in the budgets of NOy and NOx. A large disagreement between measurement and theory exists in the atmospheric distribution of HNO3. It appears that surface-based anthropogenic emissions provide nearly 65% of the global atmospheric NOy reservoir. Relatively constant NOx/NOy ratios imply that NOy and NOx are in chemical equilibrium and the NOy reservoir may be an important in situ source of atmospheric NOx. Data are interpreted to suggest that only about 20% of the upper tropospheric (7–12 km) NOx is directly attributable to its surface NOx source, and free tropospheric sources are dominant. In situ release of NOx from the NOy reservoir, lightning, direct transport of surface NOx, aircraft emissions, and small stratospheric input collectively maintain the NOx balance in the atmosphere. It is shown that atmospheric ratios of reactive nitrogen and sulfur species, along with trajectory analysis, can be used to pinpoint the source of Asian continental outflow. Compared to rural atmospheres over North America, air masses over the Pacific are highly efficient in net O3 production. Sources of tropospheric NOx cannot yet be accurately defined due to shortcomings in measurements and theory.


Journal of Geophysical Research | 1997

Chemical characteristics of continental outflow from Asia to the troposphere over the western Pacific Ocean during February-March 1994: Results from PEM-West B

Robert W. Talbot; Jack E. Dibb; Barry Lefer; J. D. Bradshaw; S. T. Sandholm; D. R. Blake; N. J. Blake; G. W. Sachse; J. E. Collins; B J Heikes; John T. Merrill; G. L. Gregory; Bruce E. Anderson; H. B. Singh; Donald C. Thornton; Alan R. Bandy; R. Pueschel

We present here the chemical composition of outflow from the Asian continent to the atmosphere over the western Pacific basin during the Pacific Exploratory Mission-West (PEM-West B) in February–March 1994. Comprehensive measurements of important tropospheric trace gases and aerosol particulate matter were performed from the NASA DC-8 airborne laboratory. Backward 5 day isentropic trajectories were used to partition the outflow from two major source regions: continental north (>20°N) and continental south (<20°N). Air parcels that had not passed over continental areas for the previous 5 days were classified as originating from an aged marine source. The trajectories and the chemistry together indicated that there was extensive rapid outflow of air parcels at altitudes below 5 km, while aged marine air was rarely encountered and only at <20°N latitude. The outflow at low altitudes had enhancements in common industrial solvent vapors such as C2Cl4, CH3CCl3, and C6H6, intermixed with the combustion emission products C2H2, C2H6, CO, and NO. The mixing ratios of all species were up to tenfold greater in outflow from the continental north compared to the continental south source region, with 210Pb concentrations reaching 38 fCi (10−15 curies) per standard cubic meter. In the upper troposphere we again observed significant enhancements in combustion-derived species in the 8–10 km altitude range, but water-soluble trace gases and aerosol species were depleted. These observations suggest that ground level emissions were lofted to the upper troposphere by wet convective systems which stripped water-soluble components from these air parcels. There were good correlations between C2H2 and CO and C2H6 (r2=0.70–0.97) in these air parcels and much weaker ones between C2H2 and H2O2 or CH3OOH (r2 ≈0.50). These correlations were the strongest in the continental north outflow where combustion inputs appeared to be recent (1–2 days old). Ozone and PAN showed general correlation in these same air parcels but not with the combustion products. It thus appears that several source inputs were intermixed in these upper tropospheric air masses, with possible contributions from European or Middle Eastern source regions. In aged marine air mixing ratios of O3 (≈20 parts per billion by volume) and PAN (≤10 parts per trillion by volume) were nearly identical at <2 km and 10–12 km altitudes due to extensive convective uplifting of marine boundary layer air over the equatorial Pacific even in wintertime. Comparison of the Pacific Exploratory Mission-West A and PEM-West B data sets shows significantly larger mixing ratios of SO2 and H2O2 during PEM-West A. Emissions from eruption of Mount Pinatubo are a likely cause for the former, while suppressed photochemical activity in winter was probably responsible for the latter. This comparison also highlighted the twofold enhancement in C2H2, C2H6, and C3H8 in the continental north outflow during PEM-West B. Although this could be due to reduced OH oxidation rates of these species in wintertime, we argue that increased source emissions are primarily responsible.


Journal of Geophysical Research | 1992

Summertime photochemistry of the troposphere at high northern latitudes

Daniel J. Jacob; Steven C. Wofsy; Peter S. Bakwin; Songmiao Fan; Robert C. Harriss; Robert W. Talbot; J. D. Bradshaw; S. T. Sandholm; H. B. Singh; Edward V. Browell; G. L. Gregory; G. W. Sachse; Mark C. Shipham; D. R. Blake; David R. Fitzjarrald

The budgets of O3, NOx (NO+NO2), reactive nitrogen (NOy), and acetic acid in the 0–6 km column over western Alaska in summer are examined by photochemical modeling of aircraft and ground-based measurements from the Arctic Boundary Layer Expedition (ABLE 3A). It is found that concentrations of O3 in the region are regulated mainly by input from the stratosphere, and losses of comparable magnitude from photochemistry and deposition. The concentrations of NOx (10–50 ppt) are sufficiently high to slow down O3 photochemical loss appreciably relative to a NOx-free atmosphere; if no NOx were present, the lifetime of O3 in the 0–6 km column would decrease from 46 to 26 days because of faster photochemical loss. The small amounts of NOx present in the Arctic troposphere have thus a major impact on the regional O3 budget. Decomposition of peroxyacetyl nitrate (PAN) can account for most of the NOx below 4-km altitude, but for only 20% at 6-km altitude. Decomposition of other organic nitrates might supply the missing source of NOx. The lifetime of NOy, in the ABLE 3A flight region is estimated at 29 days, implying that organic nitrate precursors of NOx could be supplied from distant sources including fossil fuel combustion at northern mid-latitudes. Biomass fire plumes sampled during ABLE 3A were only marginally enriched in O3; this observation is attributed in part to low NOx emissions in the fires, and in part to rapid conversion of NOx to PAN promoted by low atmospheric temperatures. It appears that fires make little contribution to the regional O3 budget. Only 30% of the acetic acid concentrations measured during ABLE 3A can be accounted for by reactions of CH3CO3 with HO2 and CH3O2. There remains a major unidentified source of acetic acid in the atmosphere.


Journal of Geophysical Research | 1991

A two-dimensional study of ethane and propane oxidation in the troposphere

M. Kanakidou; H. B. Singh; K. M. Valentin; Paul J. Crutzen

The oxidation chemistry of ethane (C2H6) and propane (C3H8) in the troposphere was studied using a global two-dimensional model, adopting observed surface volume mixing ratios of C2H6 and C3H8 as a function of latitude and season. From the calculated distribution of OH, C2H6, and C3H8 the source strengths, which compensate the chemical loss of these hydrocarbons in the atmosphere, are estimated at 16 Tg C2H6/a and 23 Tg C3 H8/a. Uncertainties involved in the calculations are discussed. The resulting seasonal and latitudinal distribution of various organic compounds, such as acetaldehyde, acetone, peroxyacetyl nitrate (PAN), peroxypropyl nitrate (PPN), and alkyl nitrates were derived. The contribution of various nitrogen species to the unidentified NOy observed during measurement campaigns was examined. C2−C3 alkyl nitrates and HNO4 formed at mixing ratios of a few tens of pptv could account only for some of the unidentified NOy. PAN is calculated to be the most abundant organic nitrate, with mixing ratios exceeding 100 pptv at mid-latitudes to high latitudes in spring in the northern hemisphere. These values are low compared to observations, however. Regionally, up to 10 times more odd nitrogen may be transported in the form of PAN than NOx. The influence of C2H6 and C3H8 chemistry on calculated mean tropospheric NOx mixing ratios and, subsequently, on O3 and OH concentrations is limited. Therefore major effects on global O3 and OH concentrations must be due to PAN formation in the low troposphere from NOx and reactive hydrocarbons other than C2H6 and C3H8. Such hydrocarbons are required to explain the observed high PAN mixing ratios.


Journal of Geophysical Research | 1992

Atmospheric chemistry in the Arctic and subarctic: Influence of natural fires, industrial emissions, and stratospheric inputs

Steven C. Wofsy; G. W. Sachse; G. L. Gregory; D. R. Blake; J. D. Bradshaw; S. T. Sandholm; H. B. Singh; J. A. Barrick; Robert C. Harriss; Robert W. Talbot; M. A. Shipham; Edward V. Browell; Daniel J. Jacob; Jennifer A. Logan

Haze layers with perturbed concentrations of trace gases, believed to originate from tundra and forest wild fires, were observed over extensive areas of Alaska and Canada in 1988. Enhancements of CH4, C2H2, C2H6, C3H8, and C4H10 were linearly correlated with CO in haze layers, with mean ratios (mole hydrocarbon/mole CO) of 0.18 (± 0.04 (1 σ)), 0.0019 (± 0.0001), 0.0055 (± 0.0002), 0.0008 (± 0.0001), and 1.2 × 10−4 (±0.2× 10−4), respectively. Enhancements of NOy, were variable, averaging 0.0056 (± 0.0030) mole NOy/mole CO, while perturbations of NOx were very small, usually undetectable. At least 1/3 of the NOy in the haze layers had been converted to peroxyacetyl nitrate (PAN), representing a potential source of NOx to the global atmosphere; much of the balance was oxidized to nitrate (HNO3 and paniculate). The composition of sub-Arctic haze layers was consistent with aged emissions from smoldering combustion, except for CH4, which appears to be partly biogenic. Inputs from the stratosphere and from biomass fires contributed major fractions of the NOy in the remote sub-Arctic troposphere. Analysis of aircraft and ground data indicates relatively little influence from mid-latitude industrial NOy in this region during summer, possibly excepting transport of PAN. Production of O3 was inefficient in sub-Arctic haze layers, less than 0.1 O3 molecules per molecule of CO, reflecting the low NOx/CO emission ratios from smoldering combustion. Mid-latitude pollution produced much more O3, 0.3 – 0.5 O3 molecules per molecule of CO, a consequence of higher NOx/CO emission ratios.

Collaboration


Dive into the H. B. Singh's collaboration.

Top Co-Authors

Avatar

D. R. Blake

University of California

View shared research outputs
Top Co-Authors

Avatar

G. W. Sachse

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. T. Sandholm

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. D. Bradshaw

University of Canterbury

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian G. Heikes

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge