Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Balthasar is active.

Publication


Featured researches published by H. Balthasar.


Astronomy and Astrophysics | 2002

Two-dimensional distribution of oscillations in a quiescent solar prominence

J. Terradas; R. Molowny-Horas; E. Wiehr; H. Balthasar; R. Oliver; J. L. Ballester

Using time series of two-dimensional Dopplergrams, a temporal and spatial analysis of oscillations in a quiescent prominence has been performed. The presence of an outstanding oscillatory signal in the acquired data has allowed us to study the two-dimensional distribution of wave motions and, in particular, to detect the location of wave generation and the anisotropic propagation of perturbations from that place. Moreover, a strong damping of oscillations has been observed, with damping times between two and three times the wave period. The direction of propagation, wavelength and phase speed, together with the damping time and wave period, have been quantified and their spatial arrangement has been analysed. Thanks to the goodness of the observational data, the image alignment procedure applied during the data reduction stage and the analysis tools employed, it has been possible to carry out a novel and far-reaching observational study of prominence oscillations.


Astronomy and Astrophysics | 2010

Magnetic loop emergence within a granule

P. Gömöry; Christian Beck; H. Balthasar; Jan Rybak; A. Kučera; J. Koza; H. Wöhl

Aims. We investigate the temporal evolution of magnetic flux emerging within a granule in the quiet-Sun internetwork at disk center. Methods. We combined IR spectropolarimetry of high angular resolution performed in two Fe i lines at 1565 nm with specklereconstructed G-band imaging. We determined the magnetic field parameters by a LTE inversion of the full Stokes vector using the SIR code, and followed their evolution in time. To interpret the observations, we created a geometrical model of a rising loop in 3D. The relevant parameters of the loop were matched to the observations where possible. We then synthesized spectra from the 3D model for a comparison to the observations. Results. We found signatures of magnetic flux emergence within a growing granule. In the early phases, a horizontal magnetic field with a distinct linear polarization signal dominated the emerging flux. Later on, two patches of opposite circular polarization signal appeared symmetrically on either side of the linear polarization patch, indicating a small loop-like structure. The mean magnetic flux density of this loop was roughly 450 G, with a total magnetic flux of around 3 × 10 17 Mx. During the ∼12 min episode of loop occurrence, the spatial extent of the loop increased from about 1 to 2 arcsec. The middle part of the appearing feature was blueshifted during its occurrence, supporting the scenario of an emerging loop. There is also clear evidence for the interaction of one loop footpoint with a preexisting magnetic structure of opposite polarity. The temporal evolution of the observed spectra is reproduced to first order by the spectra derived from the geometrical model. During the phase of clearest visibility of the loop in the observations, the observed and synthetic spectra match quantitatively. Conclusions. The observed event can be explained as a case of flux emergence in the shape of a small-scale loop. The fast disappearance of the loop at the end could possibly be due to magnetic reconnection.


Astronomische Nachrichten | 2012

The GREGOR Fabry-Pérot Interferometer

Klaus G. Puschmann; C. Denker; F. Kneer; N. Al Erdogan; H. Balthasar; S.-M. Bauer; C. Beck; N. Bello González; M. Collados; T. Hahn; J. Hirzberger; A. Hofmann; R. E. Louis; H. Nicklas; O. Okunev; V. Martínez Pillet; Emil Popow; T. Seelemann; R. Volkmer; Axel D. Wittmann; M. Woche

The GREGOR Fabry-Perot Interferometer (GFPI) is one of three first-light instruments of the German 1.5-meter GREGOR solar telescope at the Observatorio del Teide, Tenerife, Spain. The GFPI uses two tunable etalons in collimated mounting. Thanks to its large-format, high-cadence CCD detectors with sophisticated computer hard- and software it is capable of scanning spectral lines with a cadence that is sufficient to capture the dynamic evolution of the solar atmosphere. The field-of-view (FOV) of 50″×38″is well suited for quiet Sun and sunspot observations. However, in the vector spectropolarimetric mode the FOV reduces to 25″×38″. The spectral coverage in the spectroscopic mode extends from 530–860 nm with a theoretical spectral resolution of R ≈250 000, whereas in the vector spectropolarimetric mode the wavelength range is at present limited to 580–660 nm. The combination of fast narrow-band imaging and post-factum image restoration has the potential for discovery science concerning the dynamic Sun and its magnetic field at spatial scales down to ∼50 km on the solar surface (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)


Astronomy and Astrophysics | 2016

Three-dimensional structure of a sunspot light bridge

T. Felipe; M. Collados; E. Khomenko; C. Kuckein; A. Asensio Ramos; H. Balthasar; T. Berkefeld; C. Denker; A. Feller; M. Franz; A. Hofmann; Jayant Joshi; C. Kiess; A. Lagg; H. Nicklas; D. Orozco Suárez; A. Pastor Yabar; R. Rezaei; R. Schlichenmaier; D. Schmidt; W. Schmidt; M. Sigwarth; M. Sobotka; S. K. Solanki; Dirk Soltau; J. Staude; Klaus G. Strassmeier; R. Volkmer; O. von der Lühe; T. Waldmann

Context. Active regions are the most prominent manifestations of solar magnetic fields; their generation and dissipation are fundamental problems in solar physics. Light bridges are commonly present during sunspot decay, but a comprehensive picture of their role in the removal of the photospheric magnetic field is still lacking. Aims. We study the three-dimensional configuration of a sunspot, and in particular, its light bridge, during one of the last stages of its decay. Methods. We present the magnetic and thermodynamical stratification inferred from full Stokes inversions of the photospheric Si i 10 827 A and Ca i 10 839 A lines obtained with the GREGOR Infrared Spectrograph of the GREGOR telescope at the Observatorio del Teide, Tenerife, Spain. The analysis is complemented by a study of continuum images covering the disk passage of the active region, which are provided by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Results. The sunspot shows a light bridge with penumbral continuum intensity that separates the central umbra from a smaller umbra. We find that in this region the magnetic field lines form a canopy with lower magnetic field strength in the inner part. The photospheric light bridge is dominated by gas pressure (high- β ), as opposed to the surrounding umbra, where the magnetic pressure is higher. A convective flow is observed in the light bridge. This flow is able to bend the magnetic field lines and to produce field reversals. The field lines merge above the light bridge and become as vertical and strong as in the surrounding umbra. We conclude that this occurs because two highly magnetized regions approach each other during the sunspot evolution.


Astronomy and Astrophysics | 2016

Magnetic fields of opposite polarity in sunspot penumbrae

M. Franz; M. Collados; C. Bethge; R. Schlichenmaier; J. M. Borrero; W. Schmidt; A. Lagg; S. K. Solanki; Thomas Berkefeld; C. Kiess; R. Rezaei; Dirk Schmidt; M. Sigwarth; Dirk Soltau; R. Volkmer; O. von der Lühe; T. Waldmann; Domingo Orozco; A. Pastor Yabar; C. Denker; H. Balthasar; J. Staude; A. Hofmann; Klaus G. Strassmeier; A. Feller; H. Nicklas; F. Kneer; M. Sobotka

Context. A significant part of the penumbral magnetic field returns below the surface in the very deep photosphere. For lines in the visible, a large portion of this return field can only be detected indirectly by studying its imprints on strongly asymmetric and three-lobed Stokes V profiles. Infrared lines probe a narrow layer in the very deep photosphere, providing the possibility of directly measuring the orientation of magnetic fields close to the solar surface. Aims. We study the topology of the penumbral magnetic field in the lower photosphere, focusing on regions where it returns below the surface. Methods. We analyzed 71 spectropolarimetric datasets from Hinode and from the GREGOR infrared spectrograph. We inferred the quality and polarimetric accuracy of the infrared data after applying several reduction steps. Techniques of spectral inversion and forward synthesis were used to test the detection algorithm. We compared the morphology and the fractional penumbral area covered by reversed-polarity and three-lobed Stokes V profiles for sunspots at disk center. We determined the amount of reversed-polarity and three-lobed Stokes V profiles in visible and infrared data of sunspots at various heliocentric angles. From the results, we computed center-to-limb variation curves, which were interpreted in the context of existing penumbral models. Results. Observations in visible and near-infrared spectral lines yield a significant difference in the penumbral area covered by magnetic fields of opposite polarity. In the infrared, the number of reversed-polarity Stokes V profiles is smaller by a factor of two than in the visible. For three-lobed Stokes V profiles the numbers differ by up to an order of magnitude.


Astronomy and Astrophysics | 2016

Active region fine structure observed at 0.08 arcsec resolution

R. Schlichenmaier; O. von der Lühe; S. Hoch; Dirk Soltau; T. Berkefeld; Dirk Schmidt; W. Schmidt; C. Denker; H. Balthasar; A. Hofmann; Klaus G. Strassmeier; J. Staude; A. Feller; A. Lagg; S. K. Solanki; M. Collados; M. Sigwarth; R. Volkmer; T. Waldmann; F. Kneer; H. Nicklas; M. Sobotka

Context. The various mechanisms of magneto-convective energy transport determine the structure of sunspots and active regions. Aims. We characterise the appearance of light bridges and other fine-structure details and elaborate on their magneto-convective nature. Methods. We present speckle-reconstructed images taken with the broad-band imager (BBI) at the 1.5 m GREGOR telescope in the 486 nm and 589 nm bands. We estimate the spatial resolution from the noise characteristics of the image bursts and obtain 0.08″ at 589 nm. We describe structure details in individual best images as well as the temporal evolution of selected features. Results. We find branched dark lanes extending along thin (≈1″) light bridges in sunspots at various heliocentric angles. In thick (≳ 2″) light bridges the branches are disconnected from the central lane and have a Y shape with a bright grain toward the umbra. The images reveal that light bridges exist on varying intensity levels and that their small-scale features evolve on timescales of minutes. Faint light bridges show dark lanes outlined by the surrounding bright features. Dark lanes are very common and are also found in the boundary of pores. They have a characteristic width of 0.1″ or smaller. Intergranular dark lanes of that width are seen in active region granulation. Conclusions. We interpret our images in the context of magneto-convective simulations and findings: while central dark lanes in thin light bridges are elevated and associated with a density increase above upflows, the dark lane branches correspond to locations of downflows and are depressed relative to the adjacent bright plasma. Thick light bridges with central dark lanes show no projection effect. They have a flat elevated plateau that falls off steeply at the umbral boundary. There, Y-shaped filaments form as they do in the inner penumbra. This indicates the presence of inclined magnetic fields, meaning that the umbral magnetic field is wrapped around the convective light bridge.


Astronomische Nachrichten | 2016

Fitting peculiar spectral profiles in HeI10830 Å absorption features: Fitting peculiar spectral profiles in HeI10830 Å absorption features

S. J. González Manrique; C. Kuckein; A. Pastor Yabar; M. Collados; C. Denker; C. E. Fischer; Peter Gomory; A. Diercke; N. Bello González; R. Schlichenmaier; H. Balthasar; T. Berkefeld; A. Feller; S. Hoch; A. Hofmann; F. Kneer; A. Lagg; H. Nicklas; D. Orozco Suárez; D. Schmidt; W. Schmidt; M. Sigwarth; M. Sobotka; S. K. Solanki; Dirk Soltau; J. Staude; Klaus G. Strassmeier; M. Verma; R. Volkmer; O. von der Lühe

The new generation of solar instruments provides better spectral, spatial, and temporal resolution for a better understanding of the physical processes that take place on the Sun. Multiple-component profiles are more commonly observed with these instruments. Particularly, the He I 10830 A triplet presents such peculiar spectral profiles, which give information on the velocity and magnetic fine structure of the upper chromosphere. The purpose of this investigation is to describe a technique to efficiently fit the two blended components of the He I 10830 A triplet, which are commonly observed when two atmospheric components are located within the same resolution element. The observations used in this study were taken on 2015 April 17 with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) attached to the 1.5-meter GREGOR solar telescope, located at the Observatorio del Teide, Tenerife, Spain. We apply a double-Lorentzian fitting technique using Levenberg-Marquardt least-squares minimization. This technique is very simple and much faster than inversion codes. Line-of-sight Doppler velocities can be inferred for a whole map of pixels within just a few minutes. Our results show sub- and supersonic downflow velocities of up to 32 km/s for the fast component in the vicinity of footpoints of filamentary structures. The slow component presents velocities close to rest.


Astronomy and Astrophysics | 2016

Upper chromospheric magnetic field of a sunspot penumbra: observations of fine structure

Jayant Joshi; A. Lagg; S. K. Solanki; A. Feller; M. Collados; D. Orozco Suárez; R. Schlichenmaier; M. Franz; H. Balthasar; C. Denker; Thomas Berkefeld; A. Hofmann; C. Kiess; H. Nicklas; A. Pastor Yabar; R. Rezaei; Dirk Schmidt; W. Schmidt; M. Sobotka; Dirk Soltau; J. Staude; Klaus G. Strassmeier; R. Volkmer; O. von der Lühe; T. Waldmann

The fine-structure of magnetic field of a sunspot penumbra in the upper chromosphere is to be explored and compared to that in the photosphere. High spatial resolution spectropolarimetric observations were recorded with the 1.5-meter GREGOR telescope using the GREGOR Infrared Spectrograph (GRIS). The observed spectral domain includes the upper chromospheric He I triplet at 1083.0 nm and the photospheric Si I 1082.7 nm and Ca I 1083.3 nm spectral lines. The upper chromospheric magnetic field is obtained by inverting the He I triplet assuming a Milne-Eddington type model atmosphere. A height dependent inversion was applied to the Si I 1082.7 nm and Ca I 1083.3 nm lines to obtain the photospheric magnetic field. We find that the inclination of the magnetic field shows variations in the azimuthal direction both in the photosphere, but also in the upper chromosphere. The chromospheric variations remarkably well coincide with the variations in the inclination of the photospheric field and resemble the well-known spine and inter-spine structure in the photospheric layers of penumbrae. The typical peak-to-peak variations in the inclination of the magnetic field in the upper chromosphere is found to be 10-15 degree, i.e., roughly half the variation in the photosphere. In contrast, the magnetic field strength of the observed penumbra does not show variations on small spatial scales in the upper chromosphere. Thanks to the high spatial resolution observations possible with the GREGOR telescope at 1.08 microns, we find that the prominent small-scale fluctuations in the magnetic field inclination, which are a salient part of the property of sunspot penumbral photospheres, also persist in the chromosphere, although at somewhat reduced amplitudes. Such a complex magnetic configuration may facilitate penumbral chromospheric dynamic phenomena, such as penumbral micro-jets or transient bright dots.


Astronomy and Astrophysics | 2016

Inference of magnetic fields in the very quiet Sun

M. J. Martínez González; A. Pastor Yabar; A. Lagg; A. Asensio Ramos; M. Collados; S. K. Solanki; H. Balthasar; T. Berkefeld; C. Denker; Hans-Peter Doerr; A. Feller; M. Franz; S. J. González Manrique; A. Hofmann; F. Kneer; C. Kuckein; Rohan E. Louis; O. von der Lühe; H. Nicklas; Domingo Orozco; R. Rezaei; R. Schlichenmaier; Dirk Schmidt; W. Schmidt; M. Sigwarth; M. Sobotka; Dirk Soltau; J. Staude; Klaus G. Strassmeier; M. Verma

Context. Over the past 20 yr, the quietest areas of the solar surface have revealed a weak but extremely dynamic magnetism occurring at small scales ( Aims. We present high-precision spectro-polarimetric data with high spatial resolution (0.4′′) of the very quiet Sun at 1.56 μ m obtained with the GREGOR telescope to shed some light on this complex magnetism. Methods. We used inversion techniques in two main approaches. First, we assumed that the observed profiles can be reproduced with a constant magnetic field atmosphere embedded in a field-free medium. Second, we assumed that the resolution element has a substructure with either two constant magnetic atmospheres or a single magnetic atmosphere with gradients of the physical quantities along the optical depth, both coexisting with a global stray-light component. Results. Half of our observed quiet-Sun region is better explained by magnetic substructure within the resolution element. However, we cannot distinguish whether this substructure comes from gradients of the physical parameters along the line of sight or from horizontal gradients (across the surface). In these pixels, a model with two magnetic components is preferred, and we find two distinct magnetic field populations. The population with the larger filling factor has very weak (~150 G) horizontal fields similar to those obtained in previous works. We demonstrate that the field vector of this population is not constrained by the observations, given the spatial resolution and polarimetric accuracy of our data. The topology of the other component with the smaller filling factor is constrained by the observations for field strengths above 250 G: we infer hG fields with inclinations and azimuth values compatible with an isotropic distribution. The filling factors are typically below 30%. We also find that the flux of the two polarities is not balanced. From the other half of the observed quiet-Sun area ~50% are two-lobed Stokes V profiles, meaning that 23% of the field of view can be adequately explained with a single constant magnetic field embedded in a non-magnetic atmosphere. The magnetic field vector and filling factor are reliable inferred in only 50% based on the regular profiles. Therefore, 12% of the field of view harbour hG fields with filling factors typically below 30%. At our present spatial resolution, 70% of the pixels apparently are non-magnetised.


Astronomy and Astrophysics | 2014

Near-infrared spectropolarimetry of a delta-spot

H. Balthasar; Christian Beck; Rohan E. Louis; M. Verma; Carsten J. Denker

Sunspots harboring umbrae of both magnetic polarities within a common penumbra (δ-spots) are often but not always related to flares. We present first near-infrared observations (Fe i λ1078.3 nm and Si i λ1078.6 nm spectra) obtained with the Tenerife Infrared Polarimeter at the Vacuum Tower Telescope in Tenerife on 2012 June 17, which afford accurate and sensitive diagnostics to scrutinize the complex fields along the magnetic neutral line of a δ-spot within active region NOAA 11504. We examined the vector magnetic field, line-of-sight (LOS) velocities, and horizontal proper motions of this rather inactive δ-spot. We find a smooth transition of the magnetic vector field from the main umbra to that of opposite polarity (δ-umbra), but a discontinuity of the horizontal magnetic field at some distance from the δ-umbra on the polarity inversion line. The magnetic field decreases faster with height by a factor of two above the δ-umbra. The latter is surrounded by its own Evershed flow. The Evershed flow coming from the main umbra ends at a line dividing the spot into two parts. This line is marked by the occurrence of central emission in the Ca iiλ854.2 nm line. Along this line, high chromospheric LOS-velocities of both signs appear. We detect a shear flow within the horizontal flux transport velocities parallel to the dividing line.

Collaboration


Dive into the H. Balthasar's collaboration.

Top Co-Authors

Avatar

A. Hofmann

Leibniz Institute for Astrophysics Potsdam

View shared research outputs
Top Co-Authors

Avatar

M. Collados

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

C. Denker

Leibniz Institute for Astrophysics Potsdam

View shared research outputs
Top Co-Authors

Avatar

R. Volkmer

Kiepenheuer Institut für Sonnenphysik

View shared research outputs
Top Co-Authors

Avatar

Dirk Soltau

Kiepenheuer Institut für Sonnenphysik

View shared research outputs
Top Co-Authors

Avatar

W. Schmidt

Kiepenheuer Institut für Sonnenphysik

View shared research outputs
Top Co-Authors

Avatar

Klaus G. Strassmeier

Leibniz Institute for Astrophysics Potsdam

View shared research outputs
Top Co-Authors

Avatar

H. Nicklas

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge