Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Berresheim is active.

Publication


Featured researches published by H. Berresheim.


Global Biogeochemical Cycles | 1999

A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month

A. J. Kettle; Meinrat O. Andreae; D. Amouroux; T. W. Andreae; T. S. Bates; H. Berresheim; Heinz Bingemer; R. Boniforti; M. A. J. Curran; G. R. DiTullio; G. B. Jones; M. D. Keller; Ronald P. Kiene; C. Leck; Maurice Levasseur; Gill Malin; M. Maspero; Patricia A. Matrai; A. R. McTaggart; N. Mihalopoulos; B. C. Nguyen; A. Novo; J. P. Putaud; S. Rapsomanikis; G. C. Roberts; G. Schebeske; S. Sharma; Rafel Simó; R. Staubes; Suzanne M. Turner

A database of 15,617 point measurements of dimethylsulfide (DMS) in surface waters along with lesser amounts of data for aqueous and particulate dimethylsulfoniopropionate concentration, chlorophyll concentration, sea surface salinity and temperature, and wind speed has been assembled. The database was processed to create a series of climatological annual and monthly 1°×1° latitude-longitude squares of data. The results were compared to published fields of geophysical and biological parameters. No significant correlation was found between DMS and these parameters, and no simple algorithm could be found to create monthly fields of sea surface DMS concentration based on these parameters. Instead, an annual map of sea surface DMS was produced using an algorithm similar to that employed by Conkright et al. [1994]. In this approach, a first-guess field of DMS sea surface concentration measurements is created and then a correction to this field is generated based on actual measurements. Monthly sea surface grids of DMS were obtained using a similar scheme, but the sparsity of DMS measurements made the method difficult to implement. A scheme was used which projected actual data into months of the year where no data were otherwise present.


Journal of Geophysical Research | 1993

Correlation of ozone with NOy in photochemically aged air

M. Trainer; D. D. Parrish; M. P. Buhr; R. B. Norton; Fred C. Fehsenfeld; Kurt Anlauf; J. W. Bottenheim; Youhua Tang; H. A. Wiebe; James M. Roberts; Roger L. Tanner; L. Newman; V. C. Bowersox; James F. Meagher; Kenneth J. Olszyna; Michael O. Rodgers; Tao Wang; H. Berresheim; Kenneth L. Demerjian; Utpal K. Roychowdhury

During the summer of 1988, measurements of photochemical trace species were made at a coordinated network of seven rural sites in the eastern United States and Canada. At six of these sites concurrent measurements of ozone and the sum of the reactive nitrogen species, NOy, were made, and at four of the sites a measure for the reaction products of the NOx oxidation was obtained. Common to all sites, ozone, in photochemically aged air during the summer, shows an increase with increasing NOy levels, from a background value of 30–40 parts per billion by volume (ppbv) at NOy mixing ratios below 1 ppbv to values between 70 to 100 ppbv at NOy levels of 10 ppbv. Ozone correlates even more closely with the products of the NOx oxidation. The correlations from the different sites agree closely at mixing ratios of the oxidation products below 5 ppbv, but systematic differences appear at higher levels. Variations in the biogenic hydrocarbon emissions may explain these differences.


Journal of Atmospheric Chemistry | 1988

Vertical distribution of dimethylsulfide, sulfur dioxide, aerosol ions, and radon over the Northeast Pacific Ocean

Meinrat O. Andreae; H. Berresheim; T.W. Andreae; Mark A. Kritz; T. S. Bates; John T. Merrill

Dimethylsulfide (DMS), sulfur dioxide (SO2), methanesulfonate (MSA), nonsea-salt sulfate (nss-SO42−), sodium (Na+), ammonium (NH4+), and nitrate (NO3−) were determined in samples collected by aircraft over the open ocean in postfrontal maritime air masses off the northwest coast of the United States (3–12 May 1985). Measurements of radon daughter concentrations and isentropic trajectory calculations suggested that these air masses had been over the Pacific for 4–8 days since leaving the Asian continent. The DMS and MSA profiles showed very similar structures, with typical concentrations of 0.3–1.2 and 0.25–0.31 nmol m−3 (STP) respectively in the mixed layer, decreasing to 0.01–0.12 and 0.03–0.13 nmol m−3 (STP) at 3.6 km. These low atmospheric DMS concentrations are consistent with low levels of DMS measured in the surface waters of the northeastern Pacific during the study period.The atmospheric SO2 concentrations always increased with altitude from <0.16–0.25 to 0.44–1.31 nmol m−3 (STP). The nonsea-salt sulfate (ns-SO42−) concentrations decreased with altitude in the boundary layer and increased again in the free troposphere. These data suggest that, at least under the conditions prevailing during our flights, the production of SO2 and nss-SO42− from DMS oxidation was significant only within the boundary layer and that transport from Asia dominated the sulfur cycle in the free troposphere. The existence of a ‘sea-salt inversion layer’ was reflected in the profiles of those aerosol components, e.g., Na+ and NO3−, which were predominantly present as coarse particles. Our results show that long-range transport at mid-tropospheric levels plays an important role in determining the chemical composition of the atmosphere even in apparently ‘remote’ northern hemispheric regions.


Nature | 2006

Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation

Franz Rohrer; H. Berresheim

The most important chemical cleaning agent of the atmosphere is the hydroxyl radical, OH. It determines the oxidizing power of the atmosphere, and thereby controls the removal of nearly all gaseous atmospheric pollutants. The atmospheric supply of OH is limited, however, and could be overcome by consumption due to increasing pollution and climate change, with detrimental feedback effects. To date, the high variability of OH concentrations has prevented the use of local observations to monitor possible trends in the concentration of this species. Here we present and analyse long-term measurements of atmospheric OH concentrations, which were taken between 1999 and 2003 at the Meteorological Observatory Hohenpeissenberg in southern Germany. We find that the concentration of OH can be described by a surprisingly linear dependence on solar ultraviolet radiation throughout the measurement period, despite the fact that OH concentrations are influenced by thousands of reactants. A detailed numerical model of atmospheric reactions and measured trace gas concentrations indicates that the observed correlation results from compensations between individual processes affecting OH, but that a full understanding of these interactions may not be possible on the basis of our current knowledge of atmospheric chemistry. As a consequence of the stable relationship between OH concentrations and ultraviolet radiation that we observe, we infer that there is no long-term trend in the level of OH in the Hohenpeissenberg data set.


Journal of Geophysical Research | 2002

A dedicated study of new particle formation and fate in the coastal environment (PARFORCE): overview of objectives and achievements

Colin D. O'Dowd; Kaarle Hämeri; J. M. Mäkelä; Liisa Pirjola; Markku Kulmala; S. Gerard Jennings; H. Berresheim; Hans-Christen Hansson; Gerrit de Leeuw; G.J. Kunz; Andrew G. Allen; C. Nicholas Hewitt; Andrea V. Jackson; Y. Viisanen; Thorsten Hoffmann

A dedicated study into the formation of new particles, New Particle Formation and Fate in the Coastal Environment (PARFORCE), was conducted over a period from 1998 to 1999 at the Mace Head Atmospheric Research Station on the western coast of Ireland. Continuous measurements of new particle formation were taken over the 2-year period while two intensive field campaigns were also conducted, one in September 1998 and the other in June 1999. New particle events were observed on ∼90% of days and occurred throughout the year and in all air mass types. These events lasted for, typically, a few hours, with some events lasting more than 8 hours, and occurred during daylight hours coinciding with the occurrence of low tide and exposed shorelines. During these events, peak aerosol concentrations often exceeded 106 cm−3 under clean air conditions, while measured formation rates of detectable particle sizes (i.e., d > 3 nm) were of the order of 104–105 cm−3 s−1. Nucleation rates of new particles were estimated to be, at least, of the order of 105–106 cm−3 s−1 and occurred for sulphuric acid concentrations above 2 × 106 molecules cm−3; however, no correlation existed between peak sulphuric acid concentrations, low tide occurrence, or nucleation events. Ternary nucleation theory of the H2SO4-H2O-NH3 system predicts that nucleation rates far in excess of 106 cm−3 s−1 can readily occur for the given sulphuric acid concentrations; however, aerosol growth modeling studies predict that there is insufficient sulphuric acid to grow new particles (of ∼1 nm in size) into detectable sizes of 3 nm. Hygroscopic growth factor analysis of recently formed 8-nm particles illustrate that these particles must comprise some species significantly less soluble than sulphate aerosol. The nucleation-mode hygroscopic data, combined with the lack of detectable VOC emissions from coastal biota, the strong emission of biogenic halocarbon species, and the fingerprinting of iodine in recently formed (7 nm) particles suggest that the most likely species resulting in the growth of new particles to detectable sizes is an iodine oxide as suggested by previous laboratory experiments. It remains an open question whether nucleation is driven by self nucleation of iodine species, a halocarbon derivative, or whether first, stable clusters are formed through ternary nucleation of sulphuric acid, ammonia, and water vapor, followed by condensation growth into detectable sizes by condensation of iodine species. Airborne measurements confirm that nucleation occurs all along the coastline and that the coastal biogenic aerosol plume can extend many hundreds of kilometers away from the source. During the evolution of the coastal plume, particle growth is observed up to radiatively active sizes of 100 nm. Modeling studies of the yield of cloud-condensation nuclei suggest that the cloud condensation nuclei population can increase by ∼100%. Given that the production of new particles from coastal biogenic sources occurs at least all along the western coast of Europe, and possibly many other coastlines, it is suggested that coastal aerosols contribute significantly to the natural background aerosol population.


Journal of Atmospheric Chemistry | 1990

Airborne measurements of dimethylsulfide, sulfur dioxide, and aerosol ions over the southern Ocean South of Australia

H. Berresheim; Meinrat O. Andreae; G. P. Ayers; R. W. Gillett; John T. Merrill; V. J. Davis; W. L. Chameides

Vertical distributions of dimethylsulfide (DMS), sulfur dioxide (SO2), aerosol methane-sulfonate (MSA), non-sea-salt sulfate (nss-SO42-), and other aerosol ions were measured in maritime air west of Tasmania (Australia) during December 1986. A few cloudwater and rainwater samples were also collected and analyzed for major anions and cations. DMS concentrations in the mixed layer (ML) were typically between 15–60 ppt (parts per trillion, 10−12; 24 ppt=1 nmol m−3 (20°C, 1013 hPa)) and decreased in the free troposphere (FT) to about <1–2.4 ppt at 3 km. One profile study showed elevated DMS concentrations at cloud level consistent with turbulent transport (‘cloud pumping’) of air below convective cloud cells. In another case, a diel variation of DMS was observed in the ML. Our data suggest that meteorological rather than photochemical processes were responsible for this behavior. Based on model calculations we estimate a DMS lifetime in the ML of 0.9 days and a DMS sea-to-air flux of 2–3 μmol m−2 d−1. These estimates pertain to early austral summer conditions and southern mid-ocean latitudes. Typical MSA concentrations were 11 ppt in the ML and 4.7–6.8 ppt in the FT. Sulfur-dioxide values were almost constant in the ML and the lower FT within a range of 4–22 ppt between individual flight days. A strong increase of the SO2 concentration in the middle FT (5.3 km) was observed. We estimate the residence time of SO2 in the ML to be about 1 day. Aqueous-phase oxidation in clouds is probably the major removal process for SO2. The corresponding removal rate is estimated to be a factor of 3 larger than the rate of homogeneous oxidation of SO2 by OH. Model calculations suggest that roughly two-thirds of DMS in the ML are converted to SO2 and one-third to MSA. On the other hand, MSA/nss-SO42- mole ratios were significantly higher compared to values previously reported for other ocean areas suggesting a relatively higher production of MSA from DMS oxidation over the Southern Ocean. Nss-SO42- profiles were mostly parallel to those of MSA, except when air was advected partially from continental areas (Africa, Australia). In contrast to SO2, nss-SO42- values decreased significantly in the middle FT. NH4+/nss-SO42- mole ratios indicate that most non-sea-salt sulfate particles in the ML were neutralized by ammonium.


Journal of Geophysical Research | 2002

Coastal new particle formation: Environmental conditions and aerosol physicochemical characteristics during nucleation bursts

Colin D. O'Dowd; Kaarle Hämeri; J. M. Mäkelä; M. Väkevä; Pasi Aalto; Gerrit de Leeuw; G.J. Kunz; Edo Becker; Hans-Christen Hansson; Andrew G. Allen; Roy M. Harrison; H. Berresheim; Christoph Kleefeld; Michael Geever; S. Gerard Jennings; Markku Kulmala

Nucleation mode aerosol was characterized during coastal nucleation events at Mace Head during intensive New Particle Formation and Fate in the Coastal Environment (PARFORCE) field campaigns in September 1998 and June 1999. Nucleation events were observed almost on a daily basis during the occurrence of low tide and solar irradiation. In September 1998, average nucleation mode particle concentrations were 8600 cm-3 during clean air events and 2200 cm-3 during polluted events. By comparison, during June 1999, mean nucleation mode concentrations were 27,000 cm-3 during clean events and 3350 cm-3 during polluted conditions. Peak concentrations often reached 500,000-1,000,000 cm-3 during the most intense events and the duration of the events ranged from 2 to 8 hours with a mean of 4.5 hours. Source rates for detectable particle sizes (d > 3 nm) were estimated to be between 104 and 106 cm-3 s-1 and initial growth rates of new particles were as high as 0.1-0.35 nm s-1 at the tidal source region. Recently formed 8 nm particles were subjected to hygroscopic growth and were found to have a growth factor of 1.0-1.1 for humidification at 90% relative humidity. The low growth factors implicate a condensable gas with very low solubility leading to detectable particle formation. It is not clear if this condensable gas also leads to homogeneous nucleation; however, measured sulphuric acid and ammonia concentration suggest that ternary nucleation of thermodynamically stable sulphate clusters is still likely to occur. In clear air, significant particle production (>105 cm-3) was observed with sulphuric acid gas-phase concentration as low as 2 × 10 6 molecules cm-3 and under polluted conditions as high as 1.2 × 108 molecules cm-3. Copyright 2002 by the American Geophysical Union.


Journal of Geophysical Research | 1998

OH photochemistry and methane sulfonic acid formation in the coastal Antarctic boundary layer

A. Jefferson; David J. Tanner; F. L. Eisele; D. D. Davis; G. Chen; J. H. Crawford; J. W. Huey; A. L. Torres; H. Berresheim

Studies of dimethylsulfide (DMS) oxidation chemistry were conducted at Palmer Station on Anvers Island, Antarctica, during the austral summer of 1993/1994. Part of the study involved gas phase measurements of OH, methane sulfonic acid (MSA), and H2SO4 using a chemical ionization mass spectrometer, as well as measurements of the NO, CO, and 03 concentrations. Mean 24 hour concentrations from February 16-23 of OH, MSA, and H2SO4 were 1.1 x 105, 9.5 x 105, and 1.61 x 106 molecules cm -3, respectively. Model calculations of OH compared well with observed levels (e.g., within 30%). The modeling results suggest that the dominant source of OH is from the reaction of O(1D) with H20, where O(1D) is the product of 03 photolysis. Because of the clean atmospheric environment and predicted low nonmethyl hydrocarbon levels in Antarctica, the dominant OH sink was found to be reaction with CO and CH4. Particulate levels of MSA were higher than could be attributed to condensation of boundary layer (BL) gas phase MSA on to the aerosol surface. Alternate mechanisms for generating MSA in the particle phase were speculated to involve either in-cloud oxidation of dimethylsulfoxide or OH oxidation of DMS in the atmospheric buffer layer above the boundary layer followed by condensation of gas phase MSA on aerosols and transport back to the B L (Davis et al., this issue).


Journal of Geophysical Research | 1998

DMS oxidation in the Antarctic marine boundary layer: Comparison of model simulations and held observations of DMS, DMSO, DMSO2, H2SO4(g), MSA(g), and MSA(p)

D. D. Davis; G. Chen; P. Kasibhatla; A. Jefferson; David J. Tanner; F. L. Eisele; Donald H. Lenschow; William D. Neff; H. Berresheim

A sulfur field study (SCATE) at Palmer Station Antarctica (January 18 to February 25) has revealed several major new findings concerning (dimethyl sulfide) DMS oxidation chemistry and the cycling of sulfur within the Antarctic environment. Significant evidence was found supporting the notion that the OH/DMS addition reaction is a major source of dimethyl sulfoxide (DMSO). Methane sulfonic acid (MSA(g)) levels were also found to be consistent with an OH/DMS addition mechanism involving the sequential oxidation of the products DMSO and methane sulfinic acid (MSIA). Evidence supporting the hypothesis that the OH/DMS addition reaction, as well as follow-on reactions involving OH/DMSO, are a major source of SO2 was significant, but not conclusive. No evidence could be found supporting the notion that reactive intermediates (i.e., SO3) other than SO2 were an important source of H2SO4. Quite clearly, one of the major findings of SCATE was the recognition that a large fraction of the Antarctic oxidative cycle for DMS (near Palmer Station) took place above the boundary layer (BL) in what we have labeled here as the atmospheric buffer layer (BuL). Although still speculative in places, the overall picture emerging from the SCATE field/modeling results is one involving major coupling between chemistry and dynamics in the Antarctic. At Palmer the evidence points to frequent episodes of rapid vertical transport from a very shallow marine BL into the overlying BuL. Due to the combination of a long photochemical lifetime for DMS and the frequency of shallow convective events, a large fraction of ocean released DMS is transported into the BuL while still in its unoxidized state. There, in the presence of elevated OH and low aerosol scavenging, high levels of oxidized sulfur accumulate. Parcels of this BuL air are then episodically entrained back into the BL, thereby providing a controlling influence on BL SO2, DMSO, and DMSO2. Additionally, because SO2 and DMSO are major precursors to H2SO4 and MSA, BuL chemistry, in conjunction with vertical transport, also act to control BL levels of the latter species. Although many uncertainties remain in our understanding of Antarctic DMS chemistry, the above picture already suggests that previous chemical interpretations of Antarctic field data may need to be altered.


Geophysical Research Letters | 2006

Strong daytime production of OH from HNO2 at a rural mountain site

K. Acker; Detlev Möller; W. Wieprecht; Franz X. Meixner; Birger Bohn; S. Gilge; C. Plass-Dülmer; H. Berresheim

Nitrous acid and OH were measured concurrently with a number of other atmospheric components and relevant photolysis frequencies during two campaigns at the Meteorological Observatory Hohenpeissenberg (980 m a.s.l.) in summer 2002 and 2004. On most of the 26 measurement days the HNO 2 concentration surprisingly showed a broad maximum around noon (on average 100 pptv) and much lower concentrations during the night (∼30 pptv). The results indicate a strong unknown daytime source of HNO 2 with a production rate on the order of 2-4 x 10 6 cm -3 s -1 . The data demonstrate an important contribution of HNO 2 to local HO x levels over the entire day, comparable with the photolysis of O 3 and HCHO. On average during the 2004 campaign, 42% of integrated photolytic HO x formation is attributable to HNO 2 photolysis.

Collaboration


Dive into the H. Berresheim's collaboration.

Top Co-Authors

Avatar

Colin D. O'Dowd

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darius Ceburnis

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Jurgita Ovadnevaite

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

F. L. Eisele

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Elste

Deutscher Wetterdienst

View shared research outputs
Top Co-Authors

Avatar

David J. Tanner

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Giovanni Martucci

National University of Ireland

View shared research outputs
Researchain Logo
Decentralizing Knowledge