H. Christian Reinhardt
University of Cologne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by H. Christian Reinhardt.
Current Opinion in Cell Biology | 2009
H. Christian Reinhardt; Michael B. Yaffe
In response to DNA damage eukaryotic cells activate cell cycle checkpoints -- complex kinase signaling networks that prevent further progression through the cell cycle. Parallel to implementing a cell cycle arrest, checkpoint signaling also mediates the recruitment of DNA repair pathways. If the extent of damage exceeds repair capacity, additional signaling cascades are activated to ensure elimination of these damaged cells. The DNA damage response has traditionally been divided into two major kinase branches. The ATM/Chk2 module is activated after DNA double strand breaks and the ATR/Chk1 pathway responds primarily to DNA single strand breaks or bulky lesions. Both pathways converge on Cdc25, a positive regulator of cell cycle progression, which is inhibited by Chk1-mediated or Chk2-mediated phosphorylation. Recently a third effector kinase complex consisting of p38MAPK and MK2 has emerged. This pathway is activated downstream of ATM and ATR in response to DNA damage. MK2 has been shown to share substrate homology with both Chk1 and Chk2. Here we will discuss recent advances in our understanding of the eukaryotic DNA damage response with emphasis on the Chk1, Chk2, and the newly emerged effector kinases p38MAPK and MK2.
Trends in Genetics | 2012
H. Christian Reinhardt; Björn Schumacher
Genome instability contributes to cancer development and accelerates age-related pathologies as evidenced by a variety of congenital cancer susceptibility and progeroid syndromes that are caused by defects in genome maintenance mechanisms. DNA damage response (DDR) pathways that are mediated through the tumor suppressor p53 play an important role in the cell-intrinsic responses to genome instability, including a transient cell cycle arrest, senescence and apoptosis. Both senescence and apoptosis are powerful tumor-suppressive pathways preventing the uncontrolled proliferation of transformed cells. However, both pathways can potentially deplete stem and progenitor cell pools, thus promoting tissue degeneration and organ failure, which are both hallmarks of aging. p53 signaling is also involved in mediating non-cell-autonomous interactions with the innate immune system and in the systemic adjustments during the aging process. The network of p53 target genes thus functions as an important regulator of cancer prevention and aging.
Genes & Development | 2009
Hai Jiang; H. Christian Reinhardt; Jirina Bartkova; Johanna Tommiska; Carl Blomqvist; Heli Nevanlinna; Jiri Bartek; Michael B. Yaffe; Michael T. Hemann
While the contribution of specific tumor suppressor networks to cancer development has been the subject of considerable recent study, it remains unclear how alterations in these networks are integrated to influence the response of tumors to anti-cancer treatments. Here, we show that mechanisms commonly used by tumors to bypass early neoplastic checkpoints ultimately determine chemotherapeutic response and generate tumor-specific vulnerabilities that can be exploited with targeted therapies. Specifically, evaluation of the combined status of ATM and p53, two commonly mutated tumor suppressor genes, can help to predict the clinical response to genotoxic chemotherapies. We show that in p53-deficient settings, suppression of ATM dramatically sensitizes tumors to DNA-damaging chemotherapy, whereas, conversely, in the presence of functional p53, suppression of ATM or its downstream target Chk2 actually protects tumors from being killed by genotoxic agents. Furthermore, ATM-deficient cancer cells display strong nononcogene addiction to DNA-PKcs for survival after DNA damage, such that suppression of DNA-PKcs in vivo resensitizes inherently chemoresistant ATM-deficient tumors to genotoxic chemotherapy. Thus, the specific set of alterations induced during tumor development plays a dominant role in determining both the tumor response to conventional chemotherapy and specific susceptibilities to targeted therapies in a given malignancy.
Nature | 2007
Erik W. Wilker; Marcel A. T. M. van Vugt; Stephen C. Artim; Paul H. Huang; Christian P. Petersen; H. Christian Reinhardt; Yun Feng; Phillip A. Sharp; Nahum Sonenberg; Forest M. White; Michael B. Yaffe
14-3-3 proteins are crucial in a wide variety of cellular responses including cell cycle progression, DNA damage checkpoints and apoptosis. One particular 14-3-3 isoform, σ, is a p53-responsive gene, the function of which is frequently lost in human tumours, including breast and prostate cancers as a result of either hypermethylation of the 14-3-3σ promoter or induction of an oestrogen-responsive ubiquitin ligase that specifically targets 14-3-3σ for proteasomal degradation. Loss of 14-3-3σ protein occurs not only within the tumours themselves but also in the surrounding pre-dysplastic tissue (so-called field cancerization), indicating that 14-3-3σ might have an important tumour suppressor function that becomes lost early in the process of tumour evolution. The molecular basis for the tumour suppressor function of 14-3-3σ is unknown. Here we report a previously unknown function for 14-3-3σ as a regulator of mitotic translation through its direct mitosis-specific binding to a variety of translation/initiation factors, including eukaryotic initiation factor 4B in a stoichiometric manner. Cells lacking 14-3-3σ, in marked contrast to normal cells, cannot suppress cap-dependent translation and do not stimulate cap-independent translation during and immediately after mitosis. This defective switch in the mechanism of translation results in reduced mitotic-specific expression of the endogenous internal ribosomal entry site (IRES)-dependent form of the cyclin-dependent kinase Cdk11 (p58 PITSLRE), leading to impaired cytokinesis, loss of Polo-like kinase-1 at the midbody, and the accumulation of binucleate cells. The aberrant mitotic phenotype of 14-3-3σ-depleted cells can be rescued by forced expression of p58 PITSLRE or by extinguishing cap-dependent translation and increasing cap-independent translation during mitosis by using rapamycin. Our findings show how aberrant mitotic translation in the absence of 14-3-3σ impairs mitotic exit to generate binucleate cells and provides a potential explanation of how 14-3-3σ-deficient cells may progress on the path to aneuploidy and tumorigenesis.
Molecular Cell | 2010
H. Christian Reinhardt; Pia Hasskamp; Ingolf Schmedding; Sandra Morandell; Marcel A. T. M. van Vugt; XiaoZhe Wang; Rune Linding; Shao En Ong; David Weaver; Steven A. Carr; Michael B. Yaffe
Following genotoxic stress, cells activate a complex kinase-based signaling network to arrest the cell cycle and initiate DNA repair. p53-defective tumor cells rewire their checkpoint response and become dependent on the p38/MK2 pathway for survival after DNA damage, despite a functional ATR-Chk1 pathway. We used functional genetics to dissect the contributions of Chk1 and MK2 to checkpoint control. We show that nuclear Chk1 activity is essential to establish a G(2)/M checkpoint, while cytoplasmic MK2 activity is critical for prolonged checkpoint maintenance through a process of posttranscriptional mRNA stabilization. Following DNA damage, the p38/MK2 complex relocalizes from nucleus to cytoplasm where MK2 phosphorylates hnRNPA0, to stabilize Gadd45α mRNA, while p38 phosphorylates and releases the translational inhibitor TIAR. In addition, MK2 phosphorylates PARN, blocking Gadd45α mRNA degradation. Gadd45α functions within a positive feedback loop, sustaining the MK2-dependent cytoplasmic sequestration of Cdc25B/C to block mitotic entry in the presence of unrepaired DNA damage. Our findings demonstrate a critical role for the MK2 pathway in the posttranscriptional regulation of gene expression as part of the DNA damage response in cancer cells.
PLOS Biology | 2010
Marcel A. T. M. van Vugt; Alexandra K. Gardino; Rune Linding; Gerard J. Ostheimer; H. Christian Reinhardt; Shao-En Ong; Chris Soon Heng Tan; Hua Miao; Susan M. Keezer; Jeijin Li; Tony Pawson; Tim Lewis; Steven A. Carr; Stephen J. Smerdon; Thijn R. Brummelkamp; Michael B. Yaffe
A combined computational and biochemical approach reveals how mitotic kinases allow cell division to proceed in the presence of DNA damage.
Nature Reviews Molecular Cell Biology | 2013
H. Christian Reinhardt; Michael B. Yaffe
Coordinated progression through the cell cycle is a complex challenge for eukaryotic cells. Following genotoxic stress, diverse molecular signals must be integrated to establish checkpoints specific for each cell cycle stage, allowing time for various types of DNA repair. Phospho-Ser/Thr-binding domains have emerged as crucial regulators of cell cycle progression and DNA damage signalling. Such domains include 14-3-3 proteins, WW domains, Polo-box domains (in PLK1), WD40 repeats (including those in the E3 ligase SCFβTrCP), BRCT domains (including those in BRCA1) and FHA domains (such as in CHK2 and MDC1). Progress has been made in our understanding of the motif (or motifs) that these phospho-Ser/Thr-binding domains connect with on their targets and how these interactions influence the cell cycle and DNA damage response.
Journal of Cell Biology | 2011
Sandra Habbig; Malte P. Bartram; Roman Ulrich Müller; Ricarda Schwarz; Nikolaos Andriopoulos; Shuhua Chen; Josef G. Sägmüller; Martin Hoehne; Volker Burst; Max C. Liebau; H. Christian Reinhardt; Thomas Benzing; Bernhard Schermer
The conserved Hippo signaling pathway regulates organ size in Drosophila melanogaster and mammals and has an essential role in tumor suppression and the control of cell proliferation. Recent studies identified activators of Hippo signaling, but antagonists of the pathway have remained largely elusive. In this paper, we show that NPHP4, a known cilia-associated protein that is mutated in the severe degenerative renal disease nephronophthisis, acts as a potent negative regulator of mammalian Hippo signaling. NPHP4 directly interacted with the kinase Lats1 and inhibited Lats1-mediated phosphorylation of the Yes-associated protein (YAP) and TAZ (transcriptional coactivator with PDZ-binding domain), leading to derepression of these protooncogenic transcriptional regulators. Moreover, NPHP4 induced release from 14-3-3 binding and nuclear translocation of YAP and TAZ, promoting TEA domain (TEAD)/TAZ/YAP-dependent transcriptional activity. Consistent with these data, knockdown of NPHP4 negatively affected cellular proliferation and TEAD/TAZ activity, essentially phenocopying loss of TAZ function. These data identify NPHP4 as a negative regulator of the Hippo pathway and suggest that NPHP4 regulates cell proliferation through its effects on Hippo signaling.
Trends in Genetics | 2014
Felix Dietlein; Lisa Thelen; H. Christian Reinhardt
Defects in DNA repair pathways enable cancer cells to accumulate genomic alterations that contribute to their aggressive phenotype. However, tumors rely on residual DNA repair capacities to survive the damage induced by genotoxic stress. This dichotomy might explain why only isolated DNA repair pathways are inactivated in cancer cells. Accordingly, synergism has been observed between DNA-damaging drugs and targeted inhibitors of DNA repair. DNA repair pathways are generally thought of as mutually exclusive mechanistic units handling different types of lesions in distinct cell cycle phases. Recent preclinical studies, however, provide strong evidence that multifunctional DNA repair hubs, which are involved in multiple conventional DNA repair pathways, are frequently altered in cancer. We therefore propose that targeted anticancer therapies should not only exploit synthetic lethal interactions between two single genes but also consider alterations in DNA repair hubs. Such a network-based approach considerably increases the opportunities for targeting DNA repair-defective tumors.
Cell Reports | 2013
Sandra Morandell; H. Christian Reinhardt; Ian G. Cannell; Jacob S. Kim; Daniela M. Ruf; Tanya Mitra; Anthony D. Couvillon; Tyler Jacks; Michael B. Yaffe
A fundamental limitation in devising new therapeutic strategies for killing cancer cells with DNA damaging agents is the need to identify synthetic lethal interactions between tumor-specific mutations and components of the DNA damage response (DDR) in vivo. The stress-activated p38 mitogen-activated protein kinase (MAPK)/MAPKAP kinase-2 (MK2) pathway is a critical component of the DDR network in p53-deficient tumor cells in vitro. To explore the relevance of this pathway for cancer therapy in vivo, we developed a specific gene targeting strategy in which Cre-mediated recombination simultaneously creates isogenic MK2-proficient and MK2-deficient tumors within a single animal. This allows direct identification of MK2 synthetic lethality with mutations that promote tumor development or control response to genotoxic treatment. In an autochthonous model of non-small-cell lung cancer (NSCLC), we demonstrate that MK2 is responsible for resistance of p53-deficient tumors to cisplatin, indicating synthetic lethality between p53 and MK2 can successfully be exploited for enhanced sensitization of tumors to DNA-damaging chemotherapeutics in vivo.