Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Craig Heller is active.

Publication


Featured researches published by H. Craig Heller.


The Journal of Neuroscience | 1998

Neurons Containing Hypocretin (Orexin) Project to Multiple Neuronal Systems

Christelle Peyron; Devin K. Tighe; Anthony N. van den Pol; Luis de Lecea; H. Craig Heller; J. Gregor Sutcliffe; Thomas S. Kilduff

The novel neuropeptides called hypocretins (orexins) have recently been identified as being localized exclusively in cell bodies in a subregion of the tuberal part of the hypothalamus. The structure of the hypocretins, their accumulation in vesicles of axon terminals, and their excitatory effect on cultured hypothalamic neurons suggest that the hypocretins function in intercellular communication. To characterize these peptides further and to help understand what physiological functions they may serve, we undertook an immunohistochemical study to examine the distribution of preprohypocretin-immunoreactive neurons and fibers in the rat brain. Preprohypocretin-positive neurons were found in the perifornical nucleus and in the dorsal and lateral hypothalamic areas. These cells were distinct from those that express melanin-concentrating hormone. Although they represent a restricted group of cells, their projections were widely distributed in the brain. We observed labeled fibers throughout the hypothalamus. The densest extrahypothalamic projection was found in the locus coeruleus. Fibers were also seen in the septal nuclei, the bed nucleus of the stria terminalis, the paraventricular and reuniens nuclei of the thalamus, the zona incerta, the subthalamic nucleus, the central gray, the substantia nigra, the raphe nuclei, the parabrachial area, the medullary reticular formation, and the nucleus of the solitary tract. Less prominent projections were found in cortical regions, central and anterior amygdaloid nuclei, and the olfactory bulb. These results suggest that hypocretins are likely to have a role in physiological functions in addition to food intake such as regulation of blood pressure, the neuroendocrine system, body temperature, and the sleep–waking cycle.


Journal of Biological Rhythms | 1993

Serotonin and the Mammalian Circadian System: I. In Vitro Phase Shifts by Serotonergic Agonists and Antagonists

Rebecca A. Prosser; Robin R. Dean; Dale M. Edgar; H. Craig Heller; Joseph D. Miller

The primary mammalian circadian clock, located in the suprachiasmatic nuclei (SCN), receives a major input from the raphe nuclei. The role of this input is largely unknown, and is the focus of this research. The SCN clock survives in vitro, where it produces a 24-hr rhythm in spontaneous neuronal activity that is sustained for at least three cycles. The sensitivity of the SCN clock to drugs can therefore be tested in vitro by determining whether various compounds alter the phase of this rhythm. We have previously shown that the nonspecific serotonin (5-HT) agonist quipazine resets the SCN clock in vitro, inducing phase advances in the daytime and phase delays at night. These results suggest that the 5-HT-ergic input from the raphe nuclei can modulate the phase of the SCN circadian clock. In this study we began by using autoradiography to determine that the SCN contain abundant 5-HT 1A and 5-HT1B receptors, very few 5-HT1C and 5-HT 2 receptors, and no 5-HT3 receptors. Next we investigated the ability of 5-HT-ergic agonists and antagonists to reset the clock in vitro, in order to determine what type or types of 5-HT receptor(s) are functionally linked to the SCN clock. We began by providing further evidence of 5-HT-ergic effects in the SCN. We found that 5-HT mimicked the effects of quipazine, whereas the nonspecific 5-HT antagonist metergoline blocked these effects, in both the day and night. Next we found that the 5-HT1A agonist 8-OH-DPAT, and to a lesser extent the 5-HT1A-1B agonist RU 24969, mimicked the effects of quipazine during the subjective daytime, whereas the 5-HT 1A antagonist NAN-190 blocked quipazines effects. None of the other specific agonists or antagonists we tried induced similar effects. This suggests that quipazine acts on 5-HT1A receptors in the daytime to advance the SCN clock. None of the specific agents we tried were able either to mimic or to block the actions of 5-HT or quipazine at circadian time 15. Thus, we were unable to determine the type of 5-HT receptor involved in nighttime phase delays by quipazine or 5-HT. However, since the dose-response curves for quipazine during the day and night are virtually identical, we hypothesize that the nighttime 5-HT receptor is a 5-HT1-like receptor.


Science | 2011

Hibernation in Black Bears: Independence of Metabolic Suppression from Body Temperature

Øivind Tøien; John E. Blake; Dale M. Edgar; Dennis A. Grahn; H. Craig Heller; Brian M. Barnes

Hibernating black bears suppress their metabolic rate to 25% of normal, but only slightly reduce their body temperature. Black bears hibernate for 5 to 7 months a year and, during this time, do not eat, drink, urinate, or defecate. We measured metabolic rate and body temperature in hibernating black bears and found that they suppress metabolism to 25% of basal rates while regulating body temperature from 30° to 36°C, in multiday cycles. Heart rates were reduced from 55 to as few as 9 beats per minute, with profound sinus arrhythmia. After returning to normal body temperature and emerging from dens, bears maintained a reduced metabolic rate for up to 3 weeks. The pronounced reduction and delayed recovery of metabolic rate in hibernating bears suggest that the majority of metabolic suppression during hibernation is independent of lowered body temperature.


Sleep Medicine Reviews | 2009

New neurons in the adult brain: The role of sleep and consequences of sleep loss

Peter Meerlo; Ralph E. Mistlberger; Barry L. Jacobs; H. Craig Heller; Dennis McGinty

Research over the last few decades has firmly established that new neurons are generated in selected areas of the adult mammalian brain, particularly the dentate gyrus of the hippocampal formation and the subventricular zone of the lateral ventricles. The function of adult-born neurons is still a matter of debate. In the case of the hippocampus, integration of new cells in to the existing neuronal circuitry may be involved in memory processes and the regulation of emotionality. In recent years, various studies have examined how the production of new cells and their development into neurons is affected by sleep and sleep loss. While disruption of sleep for a period shorter than one day appears to have little effect on the basal rate of cell proliferation, prolonged restriction or disruption of sleep may have cumulative effects leading to a major decrease in hippocampal cell proliferation, cell survival and neurogenesis. Importantly, while short sleep deprivation may not affect the basal rate of cell proliferation, one study in rats shows that even mild sleep restriction may interfere with the increase in neurogenesis that normally occurs with hippocampus-dependent learning. Since sleep deprivation also disturbs memory formation, these data suggest that promoting survival, maturation and integration of new cells may be an unexplored mechanism by which sleep supports learning and memory processes. Most methods of sleep deprivation that have been employed affect both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Available data favor the hypothesis that decreases in cell proliferation are related to a reduction in REM sleep, whereas decreases in the number of cells that subsequently develop into adult neurons may be related to reductions in both NREM and REM sleep. The mechanisms by which sleep loss affects different aspects of adult neurogenesis are unknown. It has been proposed that adverse effects of sleep disruption may be mediated by stress and glucocorticoids. However, a number of studies clearly show that prolonged sleep loss can inhibit hippocampal neurogenesis independent of adrenal stress hormones. In conclusion, while modest sleep restriction may interfere with the enhancement of neurogenesis associated with learning processes, prolonged sleep disruption may even affect the basal rates of cell proliferation and neurogenesis. These effects of sleep loss may endanger hippocampal integrity, thereby leading to cognitive dysfunction and contributing to the development of mood disorders.


Brain Research | 1995

Stimulation of A1 adenosine receptors mimics the electroencephalographic effects of sleep deprivation

Joel H. Benington; Susheel K. Kodali; H. Craig Heller

N6-Cyclopentyladenosine (CPA), an A1 adenosine receptor agonist, increased EEG slow-wave activity in nonREM sleep when administered either systemically (0.1-3 mg/kg) or intracerebroventricularly (3.5-10 micrograms) in the rat. The power spectrum of EEG changes (as calculated by Fourier analysis) matched that produced by total sleep deprivation in the rat. The effects of CPA on the nonREM-sleep EEG were dose-dependent. These findings suggest that adenosine is an endogenous mediator of sleep-deprivation induced increases in EEG slow-wave activity, and therefore that increased adenosine release is a concomitant of accumulation of sleep need and may be involved in homeostatic feedback control of sleep expression.


Brain Research | 1990

A Serotonin Agonist Phase-shifts the Circadian Clock in the Suprachiasmatic Nuclei In Vitro

Rebecca A. Prosser; Joseph D. Miller; H. Craig Heller

The mammalian circadian pacemaker in the suprachiasmatic nuclei (SCN) receives a large serotonergic (5-HTergic) projection from the raphe nuclei. Whether the SCN pacemaker can be modulated by this afferent projection is a question of considerable theoretical and practical interest. In this study we investigated whether the 5-HT agonist, quipazine, can reset the phase of the SCN clock when it is isolated in vitro. Our results show that 1 h treatments with quipazine induce robust phase shifts in vitro, and that this effect depends upon the circadian time of treatment. We further show that the ability of quipazine to induce phase shifts is dose-dependent. These results suggest that the SCN circadian pacemaker is sensitive to 5-HTergic stimulation, and therefore that the 5-HTergic projection to the SCN may play a role in modulating the phase of the SCN clock in the intact animal.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Hippocampal-dependent learning requires a functional circadian system.

Norman F. Ruby; Calvin Hwang; Colin Wessells; Fabian Fernandez; Pei Zhang; Robert M. Sapolsky; H. Craig Heller

Decades of studies have shown that eliminating circadian rhythms of mammals does not compromise their health or longevity in the laboratory in any obvious way. These observations have raised questions about the functional significance of the mammalian circadian system, but have been difficult to address for lack of an appropriate animal model. Surgical ablation of the suprachiasmatic nucleus (SCN) and clock gene knockouts eliminate rhythms, but also damage adjacent brain regions or cause developmental effects that may impair cognitive or other physiological functions. We developed a method that avoids these problems and eliminates rhythms by noninvasive means in Siberian hamsters (Phodopus sungorus). The present study evaluated cognitive function in arrhythmic animals by using a hippocampal-dependent learning task. Control hamsters exhibited normal circadian modulation of performance in a delayed novel-object recognition task. By contrast, arrhythmic animals could not discriminate a novel object from a familiar one only 20 or 60 min after training. Memory performance was not related to prior sleep history as sleep manipulations had no effect on performance. The GABA antagonist pentylenetetrazol restored learning without restoring circadian rhythms. We conclude that the circadian system is involved in memory function in a manner that is independent of sleep. Circadian influence on learning may be exerted via cyclic GABA output from the SCN to target sites involved in learning. Arrhythmic hamsters may have failed to perform this task because of chronic inhibitory signaling from the SCN that interfered with the plastic mechanisms that encode learning in the hippocampus.


PLOS Biology | 2009

Melanopsin as a sleep modulator: circadian gating of the direct effects of light on sleep and altered sleep homeostasis in Opn4(-/-) mice.

Jessica W. Tsai; Jens Hannibal; Grace Hagiwara; Damien Colas; Elisabeth Ruppert; Norman F. Ruby; H. Craig Heller; Paul Franken; Patrice Bourgin

Analyses in mice deficient for the blue-light-sensitive photopigment melanopsin show that direct effects of light on behavior and EEG depend on the time of day. The data further suggest an unexpected role for melanopsin in sleep homeostasis.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Optogenetic disruption of sleep continuity impairs memory consolidation

Asya Rolls; Damien Colas; Antoine Roger Adamantidis; Matt Carter; Tope Lanre-Amos; H. Craig Heller; Luis de Lecea

Memory consolidation has been proposed as a function of sleep. However, sleep is a complex phenomenon characterized by several features including duration, intensity, and continuity. Sleep continuity is disrupted in different neurological and psychiatric conditions, many of which are accompanied by memory deficits. This finding has raised the question of whether the continuity of sleep is important for memory consolidation. However, current techniques used in sleep research cannot manipulate a single sleep feature while maintaining the others constant. Here, we introduce the use of optogenetics to investigate the role of sleep continuity in memory consolidation. We optogenetically targeted hypocretin/orexin neurons, which play a key role in arousal processes. We used optogenetics to activate these neurons at different intervals in behaving mice and were able to fragment sleep without affecting its overall amount or intensity. Fragmenting sleep after the learning phase of the novel object recognition (NOR) task significantly decreased the performance of mice on the subsequent day, but memory was unaffected if the average duration of sleep episodes was maintained at 62–73% of normal. These findings demonstrate the use of optogenetic activation of arousal-related nuclei as a way to systematically manipulate a specific feature of sleep. We conclude that regardless of the total amount of sleep or sleep intensity, a minimal unit of uninterrupted sleep is crucial for memory consolidation.


Brain Research | 1983

The relationship of local cerebral glucose utilization to optical density ratios

Frank R. Sharp; Thomas S. Kilduff; Sherzad Bzorgchami; H. Craig Heller; Allen F. Ryan

The validity of optical density ratios used in [14C]2-deoxyglucose neuroanatomical mapping experiments is evaluated by comparing local cerebral glucose utilization (LCGU) and optical density (OD) ratios in the same animals. OD ratios are calculated by dividing the optical density of different gray matter structures by the optical density of a single white matter structure in each animal. OD ratios are linearly related to LCGU within a given animal including stimulated, highly activated regions. Anesthesia profoundly affects the relationship between LCGU and OD ratios, however, showing that OD ratios do not provide an accurate index of LCGU between animals in different physiological states. Anesthesia had only a slight effect on OD ratios, however, indicating that OD ratios may be helpful in assessing whether structures are functionally activated between animals in different physiological states.

Collaboration


Dive into the H. Craig Heller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge