Norman F. Ruby
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Norman F. Ruby.
Nature Neuroscience | 2006
Andrea L. Meredith; Steven W. Wiler; Brooke H. Miller; Joseph S. Takahashi; Anthony A. Fodor; Norman F. Ruby; Richard W. Aldrich
Spontaneous action potentials in the suprachiasmatic nucleus (SCN) are necessary for normal circadian timing of behavior in mammals. The SCN exhibits a daily oscillation in spontaneous firing rate (SFR), but the ionic conductances controlling SFR and the relationship of SFR to subsequent circadian behavioral rhythms are not understood. We show that daily expression of the large conductance Ca2+-activated K+ channel (BK) in the SCN is controlled by the intrinsic circadian clock. BK channel–null mice (Kcnma1−/−) have increased SFRs in SCN neurons selectively at night and weak circadian amplitudes in multiple behaviors timed by the SCN. Kcnma1−/− mice show normal expression of clock genes such as Arntl (Bmal1), indicating a role for BK channels in SCN pacemaker output, rather than in intrinsic time-keeping. Our findings implicate BK channels as important regulators of the SFR and suggest that the SCN pacemaker governs the expression of circadian behavioral rhythms through SFR modulation.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Norman F. Ruby; Calvin Hwang; Colin Wessells; Fabian Fernandez; Pei Zhang; Robert M. Sapolsky; H. Craig Heller
Decades of studies have shown that eliminating circadian rhythms of mammals does not compromise their health or longevity in the laboratory in any obvious way. These observations have raised questions about the functional significance of the mammalian circadian system, but have been difficult to address for lack of an appropriate animal model. Surgical ablation of the suprachiasmatic nucleus (SCN) and clock gene knockouts eliminate rhythms, but also damage adjacent brain regions or cause developmental effects that may impair cognitive or other physiological functions. We developed a method that avoids these problems and eliminates rhythms by noninvasive means in Siberian hamsters (Phodopus sungorus). The present study evaluated cognitive function in arrhythmic animals by using a hippocampal-dependent learning task. Control hamsters exhibited normal circadian modulation of performance in a delayed novel-object recognition task. By contrast, arrhythmic animals could not discriminate a novel object from a familiar one only 20 or 60 min after training. Memory performance was not related to prior sleep history as sleep manipulations had no effect on performance. The GABA antagonist pentylenetetrazol restored learning without restoring circadian rhythms. We conclude that the circadian system is involved in memory function in a manner that is independent of sleep. Circadian influence on learning may be exerted via cyclic GABA output from the SCN to target sites involved in learning. Arrhythmic hamsters may have failed to perform this task because of chronic inhibitory signaling from the SCN that interfered with the plastic mechanisms that encode learning in the hippocampus.
PLOS Biology | 2009
Jessica W. Tsai; Jens Hannibal; Grace Hagiwara; Damien Colas; Elisabeth Ruppert; Norman F. Ruby; H. Craig Heller; Paul Franken; Patrice Bourgin
Analyses in mice deficient for the blue-light-sensitive photopigment melanopsin show that direct effects of light on behavior and EEG depend on the time of day. The data further suggest an unexpected role for melanopsin in sleep homeostasis.
Journal of Biological Rhythms | 1996
Norman F. Ruby; H. Craig Heller
Temperature compensation of circadian rhythms in neuronal firing rate was investigated in the suprachiasmatic nucleus (SCN) of ground squirrels and rats in vitro. A reduction in SCN temperature from 37 to 25°C reduced peak firing rates by > 70% in rats but only by = 21% in squirrels; trough firing rates were marginally altered in both species. In the rat SCN at 25°C, the peak in neuronal activity decreased progressively on successive days and circadian rhythms no longer were present by Day 3. There was a 37% reduction in the number of single units detected and an increase in the temporal variability of peak firing rates among individual rat SCN neurons at low temperature. By contrast, single units were readily detected and circadian rhythms were robust in squirrels at 37 and 25°C; a Q10 of 0.927 was associated with a shortening of tau by 2 h and a 5-h phase change after only 48 h at low temperature. These results suggest that temperature can have a substantial impact on circadian organization in a mammalian pacemaker considered to be temperature compensated.
Journal of Biological Rhythms | 2011
Brian P. Grone; Doris Chang; Patrice Bourgin; Vinh H. Cao; Russell D. Fernald; H. Craig Heller; Norman F. Ruby
Light can induce arrhythmia in circadian systems by several weeks of constant light or by a brief light stimulus given at the transition point of the phase response curve. In the present study, a novel light treatment consisting of phase advance and phase delay photic stimuli given on 2 successive nights was used to induce circadian arrhythmia in the Siberian hamster ( Phodopus sungorus). We therefore investigated whether loss of rhythms in behavior was due to arrhythmia within the suprachiasmatic nucleus (SCN). SCN tissue samples were obtained at 6 time points across 24 h in constant darkness from entrained and arrhythmic hamsters, and per1, per2 , bmal1, and cry1 mRNA were measured by quantitative RT-PCR. The light treatment eliminated circadian expression of clock genes within the SCN, and the overall expression of these genes was reduced by 18% to 40% of entrained values. Arrhythmia in per1, per2, and bmal1 was due to reductions in the amplitudes of their oscillations. We suggest that these data are compatible with an amplitude suppression model in which light induces singularity in the molecular circadian pacemaker.
Journal of Biological Rhythms | 2003
Norman F. Ruby
Hibernatinganimals have been a successful model system for elucidating fundamental properties of many physiological systems. Over the past 50 years, a diverse literature has emerged on the role of the circadian system in control and expression of winter torpor in several orders of birds and mammals. This body of research has also provided insights to circadian function in nonhibernating species. The aim of this review is to examine how this work applies to questions of general interest to chronobiologists, such as temperature compensation, the 2-oscillator model of entrainment, and suprachiasmatic nucleus (SCN) function. Convergent lines of evidence suggest a role for the SCN in timing daily torpor and controlling several parameters of hibernation. In addition to its role as a circadian pacemaker, the SCN may serve a noncircadian function in hibernators related to maintenance of energy balance.
PLOS ONE | 2011
Jamie M. Zeitzer; Norman F. Ruby; Ryan A. Fisicaro; H. Craig Heller
Ocular light sensitivity is the primary mechanism by which the central circadian clock, located in the suprachiasmatic nucleus (SCN), remains synchronized with the external geophysical day. This process is dependent on both the intensity and timing of the light exposure. Little is known about the impact of the duration of light exposure on the synchronization process in humans. In vitro and behavioral data, however, indicate the circadian clock in rodents can respond to sequences of millisecond light flashes. In a cross-over design, we tested the capacity of humans (n = 7) to respond to a sequence of 60 2-msec pulses of moderately bright light (473 lux) given over an hour during the night. Compared to a control dark exposure, after which there was a 3.5±7.3 min circadian phase delay, the millisecond light flashes delayed the circadian clock by 45±13 min (p<0.01). These light flashes also concomitantly increased subjective and objective alertness while suppressing delta and sigma activity (p<0.05) in the electroencephalogram (EEG). Our data indicate that phase shifting of the human circadian clock and immediate alerting effects can be observed in response to brief flashes of light. These data are consistent with the hypothesis that the circadian system can temporally integrate extraordinarily brief light exposures.
Neuroscience Letters | 2001
Ilana S. Hairston; Norman F. Ruby; Sheila M. Brooke; Christelle Peyron; Daniel P. Denning; H. Craig Heller; Robert M. Sapolsky
Plasma corticosterone (CORT) levels were measured after short periods of sleep deprivation in rats at postnatal days 12, 16, 20, and 24. There was an age-dependent increase in basal CORT levels and sleep deprivation significantly elevated CORT at all ages compared to non-sleep deprived controls. The levels of CORT after sleep deprivation in P16, P20 and P24 animals were similar, resulting in an age-dependent decrease of the magnitude of the response. Sleep deprived P12 animals had lower levels of CORT. However, the observed response to sleep deprivation suggests that sleep loss is a significant stressor at this age. These observations suggest that younger animals are more sensitive to the effects of mild sleep deprivation than older ones.
Brain Research | 1998
Norman F. Ruby; John Dark; H. Craig Heller; Irving Zucker
Female golden-mantled ground squirrels that sustained complete ablation of the suprachiasmatic nucleus (SCNx) were housed pre- and post-operatively at 23 degrees C and then at 6.5 degrees C for 5-7 yr. SCNx and control animals held at the higher temperature manifested circannual rhythms (CARs) in body mass. In contrast, body mass CARs were not expressed in 50% of SCNx squirrels during cold exposure; rhythm amplitude was reduced to 25-40% of pre-operative values and the interval between successive peaks in body mass fell outside the circannual range. Unlike normal squirrels that hibernate for about 6 months during each circannual cycle, these SCNx squirrels expressed bouts of torpor nearly continuously throughout 2.5 yr of cold exposure. Body mass increases were often observed during hibernation--a phenomenon never observed in control animals. The remaining SCNx squirrels that did not hibernate continuously displayed CARs in body mass within the normal range. The effects of SCN ablation on body mass rhythms presumably are related to disrupted patterns of hibernation, food intake, and metabolism. The SCN, which sustains neural and metabolic activity at low tissue temperatures, may exert greater influence on thermoregulation and metabolism during the hibernation season than at other times of year, thereby accounting for the greater effect of SCN ablation in squirrels maintained at low ambient temperatures.
PLOS ONE | 2013
Norman F. Ruby; Fabian Fernandez; Alex Garrett; Jessy Klima; Pei Zhang; Robert M. Sapolsky; H. Craig Heller
Performance on many memory tests varies across the day and is severely impaired by disruptions in circadian timing. We developed a noninvasive method to permanently eliminate circadian rhythms in Siberian hamsters (Phodopussungorus) so that we could investigate the contribution of the circadian system to learning and memory in animals that are neurologically and genetically intact. Male and female adult hamsters were rendered arrhythmic by a disruptive phase shift protocol that eliminates cycling of clock genes within the suprachiasmatic nucleus (SCN), but preserves sleep architecture. These arrhythmic animals have deficits in spatial working memory and in long-term object recognition memory. In a T-maze, rhythmic control hamsters exhibited spontaneous alternation behavior late in the day and at night, but made random arm choices early in the day. By contrast, arrhythmic animals made only random arm choices at all time points. Control animals readily discriminated novel objects from familiar ones, whereas arrhythmic hamsters could not. Since the SCN is primarily a GABAergic nucleus, we hypothesized that an arrhythmic SCN could interfere with memory by increasing inhibition in hippocampal circuits. To evaluate this possibility, we administered the GABAA antagonist pentylenetetrazole (PTZ; 0.3 or 1.0 mg/kg/day) to arrhythmic hamsters for 10 days, which is a regimen previously shown to produce long-term improvements in hippocampal physiology and behavior in Ts65Dn (Down syndrome) mice. PTZ restored long-term object recognition and spatial working memory for at least 30 days after drug treatment without restoring circadian rhythms. PTZ did not augment memory in control (entrained) animals, but did increase their activity during the memory tests. Our findings support the hypothesis that circadian arrhythmia impairs declarative memory by increasing the relative influence of GABAergic inhibition in the hippocampus.