Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Ehmler is active.

Publication


Featured researches published by H. Ehmler.


Plasma Physics and Controlled Fusion | 2008

Major results from the stellarator Wendelstein 7-AS (Review Article)

M. Hirsch; J. Baldzuhn; C. D. Beidler; R. Brakel; R. Burhenn; A. Dinklage; H. Ehmler; M. Endler; V. Erckmann; Y. Feng; J. Geiger; L. Giannone; G. Grieger; P. Grigull; H.-J. Hartfuss; D. Hartmann; R. Jaenicke; R. König; H. P. Laqua; H. Maassberg; K. McCormick; F. Sardei; E. Speth; U. Stroth; F. Wagner; A. Weller; A. Werner; S. Zoletnik; W As Team

Wendelstein 7-AS was the first modular stellarator device to test some basic elements of stellarator optimization: a reduced Shafranov shift and improved stability properties resulted in β-values up to 3.4% (at 0.9 T). This operational limit was determined by power balance and impurity radiation without noticeable degradation of stability or a violent collapse. The partial reduction of neoclassical transport could be verified in agreement with calculations indicating the feasibility of the concept of drift optimization. A full neoclassical optimization, in particular a minimization of the bootstrap current was beyond the scope of this project. A variety of non-ohmic heating and current drive scenarios by ICRH, NBI and in particular, ECRH were tested and compared successfully with their theoretical predictions. Besides, new heating schemes of overdense plasmas were developed such as RF mode conversion heating—Ordinary mode, Extraordinary mode, Bernstein-wave (OXB) heating—or 2nd harmonic O-mode (O2) heating. The energy confinement was about a factor of 2 above ISS95 without degradation near operational boundaries. A number of improved confinement regimes such as core electron-root confinement with central Te ≤ 7 keV and regimes with strongly sheared radial electric field at the plasma edge resulting in Ti ≤ 1.7 keV were obtained. As the first non-tokamak device, W7-AS achieved the H-mode and moreover developed a high density H-mode regime (HDH) with strongly reduced impurity confinement that allowed quasi-steady-state operation (τ ≈ 65 · τE) at densities (at 2.5 T). The first island divertor was tested successfully and operated with stable partial detachment in agreement with numerical simulations. With these results W7-AS laid the physics background for operation of an optimized low-shear steady-state stellarator.


Plasma Physics and Controlled Fusion | 2001

First island divertor experiments on the W7-AS stellarator

P. Grigull; K. McCormick; J. Baldzuhn; R. Burhenn; R. Brakel; H. Ehmler; Y. Feng; F. Gadelmeier; L. Giannone; D. Hartmann; D. Hildebrandt; M. Hirsch; R. Jaenicke; J. Kisslinger; J. Knauer; R. König; G. Kühner; H. P. Laqua; D. Naujoks; H. Niedermeyer; N. Ramasubramanian; N. Rust; F. Sardei; F. Wagner; A. Weller; U. Wenzel

1. Abstract In the past, under limiter conditions, it has been impossible to produce high-power, highdensity, quasi-stationary neutral beam injection (NBI) discharges in W7-AS. Such discharges tended to evince impurity accumulation, lack of density control and subsequent radiation collapse (Normal Confinement). Presently, W7-AS is operating with a modular, open island divertor similar to that foreseen for W7-X. The divertor enables access to a new NBI heated, high density (ne up to 4·10 20 m -3 ) operating regime (High Density H-mode). It is extant above a threshold density, and is characterized by flat density profiles, high energyand low impurity confinement times and edge-localized radiation. The HDH-mode shows strong similarity to ELM-free H-mode scenarios previously observed in W7-AS, but in contrast to these avoids impurity accumulation. These new features enable full density control and quasi steady-state operation over many confinement times (at present only technically limited by the availability of NBI) also under conditions of partial detachment from the divertor targets. In HDH-mode, even in attached discharges, the divertor target load is considerable reduced. This is mainly due to favourable upstream conditions (higher nes), edge localized radiation and increased power deposition width. The benefits of the HDH-mode do not restrict only to hydrogen plasmas. They also occur ‐ albeit in a modified manner ‐ in deuterium plasmas. Undoubtedly, there are clear isotope effects between hydrogen and deuterium discharges. The results obtained in W7-AS render good prospects for W7-X and support the island divertor concept as a serious candidate for devices with magnetic islands at the edge. 2. Results Fig. 1 summarizes the behaviour of the energy confinement time E =W/Pabs, the normalized radiated power Prad/Pabs, and separatrix density nes obtained from quasi-stationary discharges with Pabs=1.4 MW as a function of the line-averaged density ne. E-values in NC follow the scaling E ISS95 =0.26· a 0.4 ·Bt 0.83 ·a 2.21 ·R 0.65 ·ne 0.51 ·Pabs -0.59 , [2], whereas for the HDH-mode one finds E ~ 2· E ISS95 . P rad /P abs grows smoothly with ne until partial plasma detachment, where a jump in the normalized radiated power occurs. The separatrix density n es increases sharply at the NC HDH-mode transition point, then continues to climb with ne and saturates


Plasma Physics and Controlled Fusion | 2004

Lithium beam charge exchange diagnostic for edge ion temperature measurements at the ASDEX Upgrade tokamak

M. Reich; E. Wolfrum; J. Schweinzer; H. Ehmler; L. D. Horton; J. Neuhauser

Charge exchange recombination spectroscopy, utilizing a fast lithium beam as the recombination source, has been successfully applied to measuring edge ion temperature profiles of fully stripped carbon and helium ions in Ohmic, L-mode and H-mode plasmas with a radial resolution of about 6 mm. The temperatures of the carbon and helium ions agree within their respective experimental error bars in discharges where both could be measured. Depending on the plasma scenario, impurity content, beam penetration, etc, either helium or carbon can be the better choice for accurate edge measurements. The impact of edge localized modes (ELMs) on this diagnostic method has been noted. Temperature profiles in between ELMs can be determined as long as the ELM frequency is less than half the frame rate of the detector, i.e. less than about 60 Hz. In a first application, accurate measurements in L-mode plasmas with dominant electron heating and low density show much higher ion temperatures than electron temperatures across the separatrix.


Journal of Nuclear Materials | 2003

Island divertor experiments on the Wendelstein 7-AS stellarator

K. McCormick; P. Grigull; R. Burhenn; R. Brakel; H. Ehmler; Y. Feng; R. Fischer; F. Gadelmeier; L. Giannone; D. Hildebrandt; M. Hirsch; E. Holzhauer; R. Jaenicke; J. Kisslinger; T. Klinger; S. Klose; J. Knauer; R. König; G. Kühner; H. P. Laqua; D. Naujoks; H. Niedermeyer; E. Pasch; R. Narayanan; N. Rust; F. Sardei; F. Wagner; A. Weller; U. Wenzel; A. Werner

A promisingnew operational reg ime on the Wendelstein stellarator W7-AS has been discovered, fulfillingthe conditions of optimal core behavior in combination with edge parameters suitable for successful divertor scenarios. This regime, the high density H-mode (HDH), displays no systematically evident mode activity, and is edge localized mode (ELM)-free. It is extant above a power-dependent threshold density and characterized by flat density profiles, high energy- and low impurity-confinement times and edge-localized radiation. Impurity accumulation, normally as


Journal of Nuclear Materials | 2003

Influence of magnetic field configurations on divertor plasma parameters in the W7-AS stellarator

P. Grigull; K. McCormick; Y. Feng; A. Werner; R. Brakel; H. Ehmler; F. Gadelmeier; D. Hartmann; D. Hildebrandt; R. Jaenicke; J. Kisslinger; T. Klinger; R. König; D. Naujoks; H. Niedermeyer; N. Ramasubramanian; F. Sardei; F. Wagner; U. Wenzel

Abstract The new island divertor in W7-AS enables quasi steady-state operation with NBI at very high density including scenarios with stable detachment from the targets. Experiments with reversed B-field indicate that the interaction zones on the targets are affected in first order by E×B drifts. Stable detachment is restricted to magnetic field configurations with sufficiently large separation between x-points and targets and not too small field line pitch inside the islands. It is always partial in the sense that it does not extend over the full target area. This inhomogeneity is ascribed to an in/out asymmetry of the electron temperature at the upstream separatrix position.


IEEE Transactions on Applied Superconductivity | 2006

Recent Results of the Cold Tests Performed on the Stellarator W7-X Coils

Juergen Baldzuhn; H. Ehmler; Alf Hoelting; C. Sborchia; Kerstan Hertel; L. Genini; Thierry Schild

The plasma fusion experiment Wendelstein 7-X (W7-X) will use a system of superconducting coils for the production of the magnetic field. In the first paragraph, W7-X is described briefly, with emphasis on the coil system. All the superconducting coils are tested thoroughly in a cryogenic test facility. The test program is described in the second paragraph. In the third paragraph, some test results are described in more detail. Focus is here on the measurement of mechanical stresses during cool-down and application of the electrical current to the coils. The measurement of the electrical impedance, performed in order to detect short-circuits, will also be described. Finally, we present the quench tests, which are used to investigate the superconductor quality, and the Paschen-tests used for the check of the electrical insulation


symposium on fusion technology | 2003

Divertor operation in stellarators: results from W7-AS and implications for future devices

P. Grigull; K. McCormick; H. Renner; S. Masuzaki; R. König; J. Baldzuhn; S. Bäumel; R. Burhenn; R. Brakel; H. Ehmler; Y. Feng; F. Gadelmeier; L. Giannone; D. Hartmann; D. Hildebrandt; M. Hirsch; R. Jaenicke; J. Kisslinger; T. Klinger; J. Knauer; D. Naujoks; H. Niedermeyer; E. Pasch; N. Ramasubramanian; F. Sardei; F. Wagner; U. Wenzel; A. Werner; W As Team

The research on divertors for stellarators is at the beginning. Extensive studies are being prepared on large helical device (LHD) and W7-X. W7-AS is now being operated with an open island divertor (ID) which serves as a test bed for the W7-X diverter. The divertor enables access to a new NBI-heated, high-density operating regime with improved confinement properties. This regime-the high-density H-mode (HDH)-displays no evident mode activity, is extant above a threshold density and characterized by flat density profiles. high-energy- and low-impurity-confinement times and edge-localized radiation. Impurity accumulation, normally associated with ELM-free H-modes, is avoided. Quasi-steady-state discharges with n e up to 4 x 10 20 m -3 , edge radiation levels up to 90% and plasma partial detachment at the divertor targets can be simultaneously realized. The accessibility to other improved confinement modes in W7-AS (conventional H-mode anti OC-mode) is not restricted by the divertor. The results provide a promising basis for future experiments, in particular on W7-X, and recommend the ID as a serious candidate for solving the plasma exhaust problem in stellarators.


Fusion Science and Technology | 2004

Impurity Transport Studies in the Wendelstein 7-AS Stellarator

R. Burhenn; J. Baldzuhn; R. Brakel; H. Ehmler; L. Giannone; P. Grigull; J. Knauer; M. Krychowiak; M. Hirsch; K. Ida; H. Maassberg; K. McCormick; E. Pasch; H. Thomsen; A. Weller; W As Team

Abstract The dependence of impurity transport on plasma parameters in the modular stellarator Wendelstein 7-AS was investigated by means of a laser blow-off technique. An increased impurity transport at higher heating power and lower magnetic field strength as well as no effect of the isotope composition on the impurity confinement was observed. The most critical scaling with respect to stationary operation at high density is the improved confinement of impurities at high densities, leading to a degradation of plasma energy by increasing radiation and to a loss of density control. This was attributed to a reduction of the impurity diffusion coefficient with density. After installation of island divertor modules, a transition from normal confinement into the high-density H-mode (HDH) at a certain power-dependent threshold density appeared. This transition is characterized by a strong reduction of the impurity confinement time and an increase in energy confinement time. In the HDH operational regime, access to even higher densities (4 × 1020 m−3) than achieved before became possible under stationary operation conditions. Impurity transport measurements and model predictions indicate that the reduction of the impurity confinement in HDH is caused by not only a reduction of the inward convection in the core plasma but also possibly by changes in the edge transport. Comparison of experimental data with an axisymmetric transport model should elucidate the role of stellarator-specific transport aspects.


Plasma Physics and Controlled Fusion | 2003

Bolometer tomography at the density limit of the HDH mode in the W7-AS stellarator

L. Giannone; R. Brakel; R. Burhenn; H. Ehmler; Y. Feng; P. Grigull; K. McCormick; F. Wagner; J. Baldzuhn; Y. Igitkhanov; J. Knauer; K Nishimura; E. Pasch; B J Peterson; N. Ramasubramanian; N. Rust; A. Weller; A. Werner

The installation of divertor plates in the W7-AS stellarator has allowed attainment of a high energy confinement regime at high density, where the radiation profiles reached steady state. In this regime, the radial profile of the radiated power is hollow. Raising the density to the point where the radiated power approached the input power led to plasma detachment and a decrease in diamagnetic energy. This defines the density limit in a stellarator and a scaling law for this maximum density can be heuristically derived on the basis of power balance considerations. The installation of two bolometer cameras away from the divertor plates and three bolometer cameras in the vicinity of the divertor plates has provided insight into the features of high density operation of a divertor in a stellarator. In the main chamber, tomographic inversion at the density limit has shown that a poloidally asymmetric radiation profile developed as the density limit was approached. In the divertor, radiation in front of the divertor plates occurred while the plasma was attached and this radiation zone vanished at plasma detachment. Steady state discharges of up to 1.5 s have been achieved for neutral beam injection power of up to 2 MW. A precursor to a spontaneous transition out of the high confinement regime has been identified.


Journal of Nuclear Materials | 2001

Edge transport barrier formation and ELM phenomenology in the W7-AS stellarator

P. Grigull; M. Hirsch; J. Baldzuhn; H. Ehmler; F. Gadelmeier; L. Giannone; H.-J. Hartfuss; D. Hildebrandt; R. Jaenicke; J. Kisslinger; R. Koenig; K. McCormick; F. Wagner; A. Weller; C. Wendland

In NBI discharges with density ramps in W7-AS, the quiescent H-mode is restricted to the same ranges of the edge rotational transform as in ECRH discharges and occurs above threshold densities ≥ 10 20 m 3 which increase with heating power. Higher power needs higher density for stabilization. The approach to the quiescent H-mode often occurs, with increasing density and decreasing power flow through the edge, from grassy through dithering states to bursts of ELMs and, in a few cases, quasi-periodic ELMs. This goes parallel with increasing radial gradients of the plasma pressure and E-field at the edge. Higher heating power reduces in particular the T i gradients and hence the E-field gradients, which effect can be compensated by higher density. The correlations found are fairly consistent when an E x B flow shear decorrelation of the turbulent transport is assumed.

Collaboration


Dive into the H. Ehmler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge