H. Fast
Meteorological Service of Canada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by H. Fast.
Nature | 1997
Markus Rex; N. R. P. Harris; Ralph Lehmann; Geir O. Braathen; E. Reimer; Alexander Beck; M. P. Chipperfield; Reimond Alfier; Marc Allaart; F. M. O'Connor; H. Dier; V. Dorokhov; H. Fast; Manuel Gil; E. Kyrö; Zenobia Litynska; Ib Steen Mikkelsen; Mike G. Molyneux; Hideaki Nakane; Justus Notholt; Markku Rummukainen; Pierre Viatte; John C. Wenger
It is well established that extensive depletion of ozone, initiated by heterogenous reactions on polar stratospheric clouds (PSCs) can occur in both the Arctic and Antarctic lower stratosphere. Moreover, it has been shown that ozone loss rates in the Arctic region in recent years reached values comparable to those over the Antarctic,. But until now the accumulated ozone losses over the Arctic have been the smaller, mainly because the period of Arctic ozone loss has not—unlike over the Antarctic—persisted well into springtime. Here we report the occurrence—during the unusually cold 1995–96 Arctic winter—of the highest recorded chemical ozone loss over the Arctic region. Two new kinds of behaviour were observed. First, ozone loss at some altitudes was observed long after the last exposure to PSCs. This continued loss appears to be due to a removal of the nitrogen species that slow down chemical ozone depletion. Second, in another altitude range ozone loss rates decreased while PSCs were still present, apparently because of an early transformation of the ozone-destroying chlorine species into less active chlorinenitrate. The balance between these two counteracting mechanisms is probably a fine one, determined by small differences in wintertime stratospheric temperatures. If the apparent cooling trend in the Arctic stratosphere is real, more dramatic ozone losses may occur in the future.
Journal of Geophysical Research | 1998
M. Rex; P. von der Gathen; N. R. P. Harris; D. Lucic; B. M. Knudsen; G. O. Braathen; S. J. Reid; H. De Backer; H. Claude; R. Fabian; H. Fast; M Gil; E. Kyrö; I. S. Mikkelsen; Markku Rummukainen; H. G. J. Smit; J Stahelin; C. Varotsos; I. Zaitcev
A Lagrangian approach has been used to assess the degree of chemically induced ozone loss in the Arctic lower stratosphere in winter 1991/1992. Trajectory calculations are used to identify air parcels probed by two ozonesondes at different points along the trajectories. A statistical analysis of the measured differences in ozone mixing ratio and the time the air parcel spent in sunlight between the measurements provides the chemical ozone loss. Initial results were first described by von der Gathen et al. [1995]. Here we present a more detailed description of the technique and a more comprehensive discussion of the results. Ozone loss rates of up to 10 ppbv per sunlit hour (or 54 ppbv per day) were found inside the polar vortex on the 475 K potential temperature surface (about 19.5 km in altitude) at the end of January. The period of rapid ozone loss coincides and slightly lags a period when temperatures were cold enough for type I polar stratospheric clouds to form. It is shown that the ozone loss occurs exclusively during the sunlit portions of the trajectories. The time evolution and vertical distribution of the ozone loss rates are discussed.
Journal of Geophysical Research | 2002
M. Rex; R. J. Salawitch; N. R. P. Harris; P. von der Gathen; G. O. Braathen; Astrid Schulz; H. Deckelmann; M. P. Chipperfield; Björn-Martin Sinnhuber; E. Reimer; R. Alfier; Richard M. Bevilacqua; K. W. Hoppel; M. Fromm; J. Lumpe; H. Küllmann; Armin Kleinböhl; H. Bremer; M. von König; K. Künzi; D. W. Toohey; H. Vömel; Erik Charles Richard; K. C. Aikin; H. Jost; Jeffery B. Greenblatt; M. Loewenstein; J. R. Podolske; C. R. Webster; G. J. Flesch
During Arctic winters with a cold, stable stratospheric circulation, reactions on the surface of polar stratospheric clouds (PSCs) lead to elevated abundances of chlorine monoxide (ClO) that, in the presence of sunlight, destroy ozone. Here we show that PSCs were more widespread during the 1999/2000 Arctic winter than for any other Arctic winter in the past two decades. We have used three fundamentally different approaches to derive the degree of chemical ozone loss from ozonesonde, balloon, aircraft, and satellite instruments. We show that the ozone losses derived from these different instruments and approaches agree very well, resulting in a high level of confidence in the results. Chemical processes led to a 70% reduction of ozone for a region ∼1 km thick of the lower stratosphere, the largest degree of local loss ever reported for the Arctic. The Match analysis of ozonesonde data shows that the accumulated chemical loss of ozone inside the Arctic vortex totaled 117 ± 14 Dobson units (DU) by the end of winter. This loss, combined with dynamical redistribution of air parcels, resulted in a 88 ± 13 DU reduction in total column ozone compared to the amount that would have been present in the absence of any chemical loss. The chemical loss of ozone throughout the winter was nearly balanced by dynamical resupply of ozone to the vortex, resulting in a relatively constant value of total ozone of 340 ± 50 DU between early January and late March. This observation of nearly constant total ozone in the Arctic vortex is in contrast to the increase of total column ozone between January and March that is observed during most years.
Journal of Atmospheric Chemistry | 1999
M. Rex; P. von der Gathen; G. O. Braathen; N. R. P. Harris; E. Reimer; A. Beck; R. Alfier; R. Krüger-Carstensen; M. P. Chipperfield; H. De Backer; Dimitris Balis; F. O'Connor; H. Dier; V. Dorokhov; H. Fast; A. Gamma; M. Gil; E. Kyrö; Z. Litynska; I. S. Mikkelsen; M. J. Molyneux; G. Murphy; S. J. Reid; Markku Rummukainen; C. Zerefos
The chemically induced ozone loss inside the Arctic vortex during the winter 1994/95 has been quantified by coordinated launches of over 1000 ozonesondes from 35 stations within the Match 94/95 campaign. Trajectory calculations, which allow diabatic heating or cooling, were used to trigger the balloon launches so that the ozone concentrations in a large number of air parcels are each measured twice a few days apart. The difference in ozone concentration is calculated for each pair and is interpreted as a change caused by chemistry. The data analysis has been carried out for January to March between 370 K and 600 K potential temperature. Ozone loss along these trajectories occurred exclusively during sunlit periods, and the periods of ozone loss coincided with, but slightly lagged, periods where stratospheric temperatures were low enough for polar stratospheric clouds to exist. Two clearly separated periods of ozone loss show up. Ozone loss rates first peaked in late January with a maximum value of 53 ppbv per day (1.6 % per day) at 475 K and faster losses higher up. Then, in mid-March ozone loss rates at 475 K reached 34 ppbv per day (1.3 % per day), faster losses were observed lower down and no ozone loss was found above 480 K during that period. The ozone loss in hypothetical air parcels with average diabetic descent rates has been integrated to give an accumulated loss through the winter. The most severe depletion of 2.0 ppmv (60 %) took place in air that was at 515 K on 1 January and at 450 K on 20 March. Vertical integration over the levels from 370 K to 600 K gives a column loss rate, which reached a maximum value of 2.7 Dobson Units per day in mid-March. The accumulated column loss between 1 January and 31 March was found to be 127 DU (∼36 %).
Geophysical Research Letters | 1998
B. M. Knudsen; N. Larsen; I. S. Mikkelsen; J.-J. Morcrette; G. O. Braathen; E. Kyrö; H. Fast; Hartwig Gernandt; Hiroshi Kanzawa; H. Nakane; V. Dorokhov; V. Yushkov; Georg Hansen; M. Gil; R. J. Shearman
The winter 1996/97 was quite unusual with late vortex formation and polar stratospheric cloud (PSC) development and subsequent record low temperatures in March. Ozone depletion in the Arctic vortex is determined using ozonesondes. The diabatic cooling is calculated with PV-theta mapped ozone mixing ratios and the large ozone depletions, especially at the center of the vortex where most PSC existence was predicted, enhances the diabatic cooling by up to 80%. The average vortex chemical ozone depletion from January 6 to April 6 is 33, 46, 46, 43, 35, 33, 32 and 21 % in air masses ending at 375, 400, 425, 450, 475, 500, 525, and 550 K (about 14–22 km). This depletion is corrected for transport of ozone across the vortex edge calculated with reverse domain-filling trajectories. 375 K is in fact below the vortex, but the calculation method is applicable at this level with small changes. The column integrated chemical ozone depletion amounts to about 92 DU (21%), which is comparable to the depletions observed during the previous four winters.
Journal of Geophysical Research | 2001
A. Schulz; M. Rex; N. R. P. Harris; G. O. Braathen; E. Reimer; R. Alfier; I. Kilbane-Dawe; S. Eckermann; M. Allaart; M. Alpers; B. R. Bojkov; J. Cisneros; H. Claude; E. Cuevas; J. Davies; H. De Backer; H. Dier; V. Dorokhov; H. Fast; S. Godin; Bryan Jay Johnson; B. Kois; Yutaka Kondo; E. Kosmidis; E. Kyrö; Z. Litynska; I. S. Mikkelsen; M. J. Molyneux; G. Murphy; T. Nagai
Chemical ozone loss rates inside the Arctic polar vortex were determined in early 1998 and early 1999 by using the Match technique based on coordinated ozonesonde measurements. These two winters provide the only opportunities in recent years to investigate chemical ozone loss in a warm Arctic vortex under threshold conditions, i.e., where the preconditions for chlorine activation, and hence ozone destruction, only occurred occasionally. In 1998, results were obtained in January and February between 410 and 520 K. The overall ozone loss was observed to be largely insignificant, with the exception of late February, when those air parcels exposed to temperatures below 195 K were affected by chemical ozone loss. In 1999, results are confined to the 475 K isentropic level, where no significant ozone loss was observed. Average temperatures were some 8°–10° higher than those in 1995, 1996, and 1997, when substantial chemical ozone loss occurred. The results underline the strong dependence of the chemical ozone loss on the stratospheric temperatures. This study shows that enhanced chlorine alone does not provide a sufficient condition for ozone loss. The evolution of stratospheric temperatures over the next decade will be the determining factor for the amount of wintertime chemical ozone loss in the Arctic stratosphere.
Journal of Atmospheric Chemistry | 1998
S. J. Reid; M. Rex; P. von der Gathen; I. Fløisand; Frode Stordal; G. D. Carver; Aaron T. Beck; E. Reimer; R. Krüger-Carstensen; L. L. de Haan; G. Braathen; V. Dorokhov; H. Fast; E. Kyrö; M. Gil; Z. Litynska; M. J. Molyneux; G. Murphy; F. O'Connor; F. Ravegnani; C. Varotsos; John C. Wenger; C. Zerefos
In this paper, we show that the rate of ozone loss in both polar and mid-latitudes, derived from ozonesonde and satellite data, has almost the same vertical distribution (although opposite sense) to that of ozone laminae abundance. Ozone laminae appear in the lower stratosphere soon after the polar vortex is established in autumn, increase in number throughout the winter and reach a maximum abundance in late winter or spring. We indicate a possible coupling between mid-winter, sudden stratospheric warmings (when the vortex is weakened or disrupted) and the abundance of ozone laminae using a 23-year record of ozonesonde data from the World Ozone Data Center in Canada combined with monthly-mean January polar temperatures at 30 hPa.Results are presented from an experiment conducted during the winter of 1994/95, in phase II of the Second European Stratospheric And Mid-latitude Experiment (SESAME), in which 93 ozone-enhanced laminae of polar origin observed by ozonesondes at different time and locations are linked by diabatic trajectories, enabling them to be probed twice or more. It is shown that, in general, ozone concentrations inside laminae fall progressively with time, mixing irreversibly with mid-latitude air on time-scales of a few weeks. A particular set of laminae which advected across Europe during mid February 1995 are examined in detail. These laminae were observed almost simultaneously at seven ozonesonde stations, providing information on their spatial scales. The development of these laminae has been modelled using the Contour Advection algorithm of Norton (1994), adding support to the concept that many laminae are extrusions of vortex air. Finally, a photochemical trajectory model is used to show that, if the air in the laminae is chemically activated, it will impact on mid-latitude ozone concentrations. An estimate is made of the potential number of ozone molecules lost each winter via this mechanism.
Geophysical Research Letters | 2000
A. Schulz; M. Rex; J. Steger; N. R. P. Harris; G. O. Braathen; E. Reimer; R. Alfier; A. Beck; M. Alpers; J. Cisneros; H. Claude; H. De Backer; H. Dier; V. Dorokhov; H. Fast; S. Godin; Georg Hansen; H. Kanzawa; B. Kois; Y. Kondo; E. Kosmidis; E. Kyrö; Z. Litynska; M. J. Molyneux; G. Murphy; H. Nakane; C. Parrondo; F. Ravegnani; C. Varotsos; C. Vialle
With the Match technique, which is based on the coordinated release of ozonesondes, chemical ozone loss rates in the Arctic stratospheric vortex in early 1997 have been quantified in a vertical region between 400 K and 550 K. Ozone destruction was observed from mid February to mid March in most of these levels, with maximum loss rates between 25 and 45 ppbv/day. The vortex averaged loss rates and the accumulated vertically integrated ozone loss have been smaller than in the previous two winters, indicating that the record low ozone columns observed in spring 1997 were partly caused by dynamical effects. The observed ozone loss is inhomogeneous through the vortex with the highest loss rates located in the vortex centre, coinciding with the lowest temperatures. Here the loss rates per sunlit hour reached 6 ppbv/h, while the corresponding vortex averaged rates did not exceed 3.9 ppbv/h.
Journal of Geophysical Research | 1998
Nikita S. Pougatchev; Nicholas Jones; Brian J. Connor; C. P. Rinsland; E. Becker; M. T. Coffey; V. S. Connors; Philippe Demoulin; A. V. Dzhola; H. Fast; E. I. Grechko; James W. Hannigan; M. Koike; Y. Kondo; Emmanuel Mahieu; William G. Mankin; R. L. Mittermeier; Justus Notholt; H. G. Reichle; B. Sen; L. P. Steele; G. C. Toon; L. N. Yurganov; Rodolphe Zander; Yongjing Zhao
Results of the comparison of carbon monoxide ground-based infrared solar spectroscopic measurements with data obtained during 1994 Measurement of Air Pollution From Space (MAPS) flights are presented. Spectroscopic measurements were performed correlatively with April and October MAPS flights by nine research groups from Belgium, Canada, Germany, Japan, New Zealand, Russia, and the United States. Characterization of the techniques and error analysis were performed. The role of the CO a priori profile used in the retrieval was estimated. In most cases an agreement between spectroscopic and MAPS data is within estimated MAPS accuracy of _+ 10%.
Journal of Atmospheric Chemistry | 1990
C. B. Farmer; B. Carli; A. Bonetti; M. Carlotti; B. M. Dinelli; H. Fast; Wayne F. J. Evans; N. Louisnard; C. Alamichel; William G. Mankin; M. T. Coffey; I. G. Nolt; D. G. Murcray; A. Goldman; Gerald M. Stokes; D. W. Johnson; Wesley A. Traub; Kelly Chance; Rodolphe Zander; Ginette Roland; L. Delbouille
All of the techniques used to measure stratospheric HCl during the two BIC campaigns involved high resolution infrared spectroscopy. The balloon-borne instruments included five different spectrometers, three operating in the solar absorption mode and two in emission (at distinctly different wavelengths). Ground-based and aircraft correlative measurements were made close to the balloon locations, again by near-infrared spectroscopy.Within this set of results, comparisons between different techniques (absorption vs emission) viewing the same airmass (i.e., on the same gondola) were possible, as were comparisons between the same technique used on different gondolas spaced closely in time and location. The final results yield a mean profile of concentration of HC1 between 18 and 40 km altitude; an envelope of ±15% centered on this profile encompasses all of the results within one standard deviation of their individual mean values. The absolute accuracy of the final profile is estimated to be no worse than 10%. It is concluded also that the measurement techniques for HCl have reached a level of performance where a precision of 10% to 15% can be confidently expected.