Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Kalisch is active.

Publication


Featured researches published by H. Kalisch.


Applied Physics Express | 2011

Recessed-Gate Enhancement-Mode AlGaN/GaN Heterostructure Field-Effect Transistors on Si with Record DC Performance

Herwig Hahn; Gerrit Lükens; N. Ketteniss; H. Kalisch; Andrei Vescan

Enhancement-mode devices are in the centre of current research on group-III nitride transistors. The realisation of high-performance enhancement-mode transistors via gate recessing requires damage-free processing. We report on enhancement-mode AlGaN/GaN-on-Si heterostructure field-effect transistors (HFETs) fabricated with a damage-free digital etch technique. The threshold voltage (Vth) achieved is as high as +0.5 V. For AlGaN/GaN-on-Si HFETs, a record extrinsic transconductance (gm) of 420 mS/mm and a record maximum drain current Idmax of 500 mA/mm have been demonstrated. Furthermore, proper turn-off characteristics have been realised. Pulsed I–V characteristics reveal nearly no current collapse.


Journal of Physics D | 2010

Dielectric function and optical properties of Al-rich AlInN alloys pseudomorphically grown on GaN

E. Sakalauskas; H Behmenburg; C. Hums; P. Schley; Georg Rossbach; C. Giesen; M. Heuken; H. Kalisch; R H Jansen; J. Bläsing; Armin Dadgar; A. Krost; R. Goldhahn

A detailed discussion of the optical properties of Al-rich Al1−xInxN alloy films is presented. The (0 0 0 1)-oriented layers with In contents between x = 0.143 and x = 0.242 were grown by metal-organic vapour phase epitaxy on thick GaN buffers. Sapphire or Si(1 1 1) served as the substrate. High-resolution x-ray diffraction revealed pseudomorphic growth of the nearly lattice-matched alloys; the data analysis yielded the composition as well as the in-plain strain. The complex dielectric function (DF) between 1 and 10 eV was determined from spectroscopic ellipsometry measurements. The sharp onset of the imaginary part of the DF defines the direct absorption edge, while clearly visible features in the high-photon energy range of the DF, attributed to critical points (CPs) of the band structure, indicate promising crystalline quality of the AlInN layers. It is demonstrated that the experimental data can be well reproduced by an analytical DF model. The extracted characteristic transition energies are used to determine the bowing parameters for all CPs of the band structure. In particular, strain and the high exciton binding energies for the Al-rich alloys are taken into account in order to assess the splitting between the valence band with symmetry and the conduction band at the centre of the Brillouin zone. Finally, the compositional dependence of the high-frequency dielectric constants is reported.


Semiconductor Science and Technology | 2010

Study on quaternary AlInGaN/GaN HFETs grown on sapphire substrates

N. Ketteniss; L. Rahimzadeh Khoshroo; M. Eickelkamp; M. Heuken; H. Kalisch; R. H. Jansen; Andrei Vescan

We report on AlInGaN/GaN heterostructure field effect transistors (HFETs) and the effect of different barrier material compositions. The analytical model for the interface charge in quaternary nitride heterostructures is described in detail and is applied in the calculation of the expected sheet carrier density. Experimental results from different lattice-matched AlInGaN/GaN heterostructures are presented and compared with the analytical predictions. Three heterostructures with AlInGaN barriers grown on sapphire substrates were processed and have been investigated. Each barrier layer was lattice-matched to GaN and the gallium content was 0.1, 0.15 and 0.2 at a barrier thickness of 13.5, 12.8 and 11.3 nm, respectively. Additionally, from these experiments, the basic trends for quaternary nitride Schottky barrier contacts are discussed. Finally, comprehensive dc characterizations have been performed. All devices had a gate length of 1 µm and exhibited a good transconductance of around 260 mS mm−1 at nearly the same current density level. An increase in threshold voltage as well as a decrease in gate leakage current for increasing GaN content has been observed. The nearly constant electron mobility in the range of 1700 cm2 V−1 s−1 at room temperature is within the best reported so far for HFETs with InN-containing barriers.


Journal of Applied Physics | 2011

Dielectric function and optical properties of quaternary AlInGaN alloys

E. Sakalauskas; Benjamin Reuters; L. Rahimzadeh Khoshroo; H. Kalisch; M. Heuken; Andrei Vescan; Marcus Röppischer; Christoph Cobet; Gerhard Gobsch; R. Goldhahn

The optical properties of quaternary Alx Iny Ga1-x-yN alloy films with 0.16< x<0.64 and 0.02< y<0.13 are presented. The (0001)-oriented AlInGaN layers were grown by metal-organic vapor phase epitaxy on thick GaN/sapphire templates. High-resolution x-ray diffraction measurements revealed the pseudomorphic growth of the AlInGaN films on the GaN buffer. Rutherford backscattering and wavelength-dispersive x-ray spectroscopy analysis were used in order to determine the composition of the alloys. The ordinary dielectric function (DF) of the AlInGaN samples was determined in the range of 1–10 eV by spectroscopic ellipsometry (SE) at room temperature (synchrotron radiation: BESSY II). The sharp onset of the imaginary part of the DF defines the direct absorption edge of the alloys. At higher photon energies, pronounced peaks are observed in the DF indicating a promising optical quality of the material. These features are correlated to the critical points of the band structure (van Hove singularities). An analytica...


Applied Physics Letters | 2009

Highly efficient yellow organic light emitting diode based on a layer-cross faded emission layer allowing easy color tuning

Florian Lindla; Manuel Boesing; Christoph Zimmermann; Frank Jessen; Philipp van Gemmern; Dietrich Bertram; Dietmar Keiper; Nico Meyer; Michael Heuken; H. Kalisch; R. H. Jansen

An easy way to adjust the color of yellow organic light emitting diodes (OLED) is realized by basing the emission layer on a cross-fading zone of two unipolar-conducting host materials doping parts of it either with a red or green phosphorescent emitter at varying thickness ratios. At color coordinates of 0.47/0.50, a current efficacy of 42.2 cd/A (16.2% external quantum efficiency) and a power efficacy of 32.9 lm/W (1000 cd/m2) are measured without light extraction enhancement. Mixed-host emission layer OLED without cross-fading are processed for comparison. Exciton distributions are studied. The concept is suggested to be useful for white OLED.


IEEE Transactions on Electron Devices | 2013

p-Channel Enhancement and Depletion Mode GaN-Based HFETs With Quaternary Backbarriers

Herwig Hahn; Benjamin Reuters; Alexander Pooth; Bernd Holländer; M. Heuken; H. Kalisch; Andrei Vescan

Within the last years, III-nitride-based devices have been demonstrated with exceptional performance. There is, however, a severe lack of knowledge when it comes fabrication of p-channel devices. p-Channel heterostructure field-effect transistors (HFETs) could open the way for nitride-based complementary logic. Here, a comprehensive study of enhancement and depletion mode p-channel GaN/AlInGaN HFETs is performed. The influence of a highly p-doped GaN cap layer on device performance is investigated. Gate recessing and changes in composition of the backbarrier are analyzed. ON/OFF ratios of up to 108 and subthreshold swings of about 75 mV/decade are achieved.


Semiconductor Science and Technology | 2012

First polarization-engineered compressively strained AlInGaN barrier enhancement-mode MISHFET

Herwig Hahn; Ben Reuters; Ada Wille; N. Ketteniss; F. Benkhelifa; O. Ambacher; H. Kalisch; Andrei Vescan

One current focus of research is the realization of GaN-based enhancement-mode devices. A novel approach for the realization of enhancement-mode behaviour is the utilization of polarization matching between the barrier and the GaN buffer. Yet, the utilization of a quaternary barrier combining polarization engineering together with a large conduction band offset has not been demonstrated so far. Here, epitaxially grown, compressively strained AlInGaN is applied as a nearly polarization-matched barrier layer on GaN resulting in enhancement-mode operation. The insulated-gate devices are fabricated gate-first with Al2O3 as gate dielectric. Passivated metal insulator semiconductor heterostructure field effect transistors yielded threshold voltages (Vth) of up to +1 V. The devices withstand negative and positive gate-biased stress and a positive Vth is maintained even after long-time negative bias stress.


Journal of Applied Physics | 2007

Crystal growth and properties of LiAlO2 and nonpolar GaN on LiAlO2 substrate

Mitch M.C. Chou; D. R. Hang; H. Kalisch; R. H. Jansen; Y. Dikme; M. Heuken; G. P. Yablonskii

In this study, the growth and properties of LiAlO2 material and a nonpolar GaN-based light-emitting-diode (LED) structure on LiAlO2 have been investigated. The LiAlO2 material is grown by the Czochralski pulling technique and is used as a substrate for nonpolar nitride growth. An improved surface roughness can be obtained by a four-step polishing process. With subsequent nitridation treatment, a pure M-plane (1010) GaN can be obtained. An electron microscope shows an abundance of cracks that are oriented parallel to the (001) and (100) planes of the LiAlO2 substrate on the rear surface of GaN. The absence of the polarization-induced electric field of a GaN-based LED structure on LiAlO2 was shown by using photoluminescence measurements. Therefore, this approach is promising to further increase the luminescence performance of GaN-based LEDs.


Semiconductor Science and Technology | 2014

The effect of the inversion channel at the AlN/Si interface on the vertical breakdown characteristics of GaN-based devices

Hady Yacoub; Dirk Fahle; Matthias Finken; Herwig Hahn; C Blumberg; W Prost; H. Kalisch; M. Heuken; Andrei Vescan

GaN-on-Si transistors attract increasing interest for power applications. However, the breakdown behavior of such devices remains below theoretical expectations, for which the Si substrate is typically made responsible. In this work, the effect of the thickness of an aluminum nitride buffer layer on the vertical breakdown voltage, measured relative to a grounded silicon substrate, has been investigated. A voltage-polarity-dependent breakdown mechanism has been observed. It has been found that the breakdown in the positive bias voltage regime is initiated by carrier injection, for which the carriers originate from an inversion channel formed between the epitaxial layers and the p-silicon substrate. TCAD simulations have confirmed the proposed explanations, and suggest that appropriate modification of the electronic structure at the AlN/silicon interface could significantly improve the vertical breakdown voltage.


Applied Physics Letters | 2011

Employing exciton transfer molecules to increase the lifetime of phosphorescent red organic light emitting diodes

Florian Lindla; Manuel Boesing; Philipp van Gemmern; Dietrich Bertram; Dietmar Keiper; Michael Heuken; H. Kalisch; R. H. Jansen

The lifetime of phosphorescent red organic light emitting diodes (OLEDs) is investigated employing either N,N′-diphenyl-N,N′-bis(1-naphthylphenyl)-1,1′-biphenyl-4,4′-diamine (NPB), TMM117, or 4,4′,4″-tris(N-carbazolyl)-triphenylamine (TCTA) as hole-conducting host material (mixed with an electron conductor). All OLED (organic vapor phase deposition-processed) show similar efficiencies around 30 lm/W but strongly different lifetimes. Quickly degrading OLED based on TCTA can be stabilized by doping exciton transfer molecules [tris-(phenyl-pyridyl)-Ir (Ir(ppy)3)] to the emission layer. At a current density of 50 mA/cm2 (12 800 cd/m2), a lifetime of 387 h can be achieved. Employing exciton transfer molecules is suggested to prevent the degradation of the red emission layer in phosphorescent white OLED.

Collaboration


Dive into the H. Kalisch's collaboration.

Top Co-Authors

Avatar

M. Heuken

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. P. Yablonskii

National Academy of Sciences of Belarus

View shared research outputs
Top Co-Authors

Avatar

E. V. Lutsenko

National Academy of Sciences of Belarus

View shared research outputs
Top Co-Authors

Avatar

C. Mauder

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar

Y. Dikme

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Herwig Hahn

RWTH Aachen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge