Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Kaspar Binz is active.

Publication


Featured researches published by H. Kaspar Binz.


Nature Biotechnology | 2005

Engineering novel binding proteins from nonimmunoglobulin domains

H. Kaspar Binz; Patrick Amstutz; Andreas Plückthun

Not all adaptive immune systems use the immunoglobulin fold as the basis for specific recognition molecules: sea lampreys, for example, have evolved an adaptive immune system that is based on leucine-rich repeat proteins. Additionally, many other proteins, not necessarily involved in adaptive immunity, mediate specific high-affinity interactions. Such alternatives to immunoglobulins represent attractive starting points for the design of novel binding molecules for research and clinical applications. Indeed, through progress and increased experience in library design and selection technologies, gained not least from working with synthetic antibody libraries, researchers have now exploited many of these novel scaffolds as tailor-made affinity reagents. Significant progress has been made not only in the basic science of generating specific binding molecules, but also in applications of the selected binders in laboratory procedures, proteomics, diagnostics and therapy. Challenges ahead include identifying applications where these novel proteins can not only be an alternative, but can enable approaches so far deemed technically impossible, and delineate those therapeutic applications commensurate with the molecular properties of the respective proteins.


Journal of Molecular Biology | 2003

Designing Repeat Proteins: Well-expressed, Soluble and Stable Proteins from Combinatorial Libraries of Consensus Ankyrin Repeat Proteins

H. Kaspar Binz; Michael T. Stumpp; Patrik Forrer; Patrick Amstutz; Andreas Plückthun

We describe an efficient way to generate combinatorial libraries of stable, soluble and well-expressed ankyrin repeat (AR) proteins. Using a combination of sequence and structure consensus analyses, we designed a 33 amino acid residue AR module with seven randomized positions having a theoretical diversity of 7.2x10(7). Different numbers of this module were cloned between N and C-terminal capping repeats, i.e. ARs designed to shield the hydrophobic core of stacked AR modules. In this manner, combinatorial libraries of designed AR proteins consisting of four to six repeats were generated, thereby potentiating the theoretical diversity. All randomly chosen library members were expressed in soluble form in the cytoplasm of Escherichia coli in amounts up to 200 mg per 1 l of shake-flask culture. Virtually pure proteins were obtained in a single purification step. The designed AR proteins are monomeric and display CD spectra identical with those of natural AR proteins. At the same time, our AR proteins are highly thermostable, with T(m) values ranging from 66 degrees C to well above 85 degrees C. Thus, our combinatorial library members possess the properties required for biotechnological applications. Moreover, the favorable biophysical properties and the modularity of the AR fold may account, partly, for the abundance of natural AR proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Designed to be stable: Crystal structure of a consensus ankyrin repeat protein

Andreas Kohl; H. Kaspar Binz; Patrik Forrer; Michael T. Stumpp; Andreas Plückthun; Markus G. Grütter

Ankyrin repeat (AR) proteins mediate innumerable protein–protein interactions in virtually all phyla. This finding suggested the use of AR proteins as designed binding molecules. Based on sequence and structural analyses, we designed a consensus AR with fixed framework and randomized interacting residues. We generated several combinatorial libraries of AR proteins consisting of defined numbers of this repeat. Randomly chosen library members are expressed in soluble form in the cytoplasm of Escherichia coli constituting up to 30% of total cellular protein and show high thermodynamic stability. We determined the crystal structure of one of those library members to 2.0-Å resolution, providing insight into the consensus AR fold. Besides the highly complementary hydrophobic repeat–repeat interfaces and the absence of structural irregularities in the consensus AR protein, the regular and extended hydrogen bond networks in the β-turn and loop regions are noteworthy. Furthermore, all residues found in the turn region of the Ramachandran plot are glycines. Many of these features also occur in natural AR proteins, but not in this rigorous and standardized fashion. We conclude that the AR domain fold is an intrinsically very stable and well-expressed scaffold, able to display randomized interacting residues. This scaffold represents an excellent basis for the design of novel binding molecules.


Cancer Research | 2010

Efficient Tumor Targeting with High-Affinity Designed Ankyrin Repeat Proteins: Effects of Affinity and Molecular Size

Christian Zahnd; Martin Kawe; Michael T. Stumpp; Christine de Pasquale; Rastislav Tamaskovic; Gabriela Nagy-Davidescu; Birgit Dreier; Roger Schibli; H. Kaspar Binz; Robert Waibel; Andreas Plückthun

Slow-clearing, tumor-targeting proteins such as monoclonal antibodies typically exhibit high tumor accumulation but low tissue contrast, whereas intermediate-sized proteins such as scFvs show faster clearance but only moderate tumor accumulation. For both, tumor targeting does not seem to improve further above an optimal affinity. We show here that with very small high-affinity proteins such as designed ankyrin repeat proteins (DARPins), these limits can be overcome. We have systematically investigated the influence of molecular mass and affinity on tumor accumulation with DARPins with specificity for HER2 in SK-OV-3.ip nude mouse xenografts. DARPins with a mass of 14.5 kDa and affinities between 270 nmol/L and 90 pmol/L showed a strong correlation of tumor accumulation with affinity to HER2, with the highest affinity DARPin reaching 8% ID/g after 24 hours and 6.5% ID/g after 48 hours (tumor-to-blood ratio >60). Tumor autoradiographs showed good penetration throughout the tumor mass. Genetic fusion of two DARPins (30 kDa) resulted in significantly lower tumor accumulation, similar to values observed for scFvs, whereas valency had no influence on accumulation. PEGylation of the DARPins increased the circulation half-life, leading to higher tumor accumulation (13.4% ID/g after 24 hours) but lower tumor-to-blood ratios. Affinity was less important for tumor uptake of the PEGylated constructs. We conclude that two regimes exist for delivering high levels of drug to a tumor: small proteins with very high affinity, such as unmodified DARPins, and large proteins with extended half-life, such as PEGylated DARPins, in which the importance of affinity is less pronounced.


Drug Discovery Today | 2008

DARPins: a new generation of protein therapeutics.

Michael T. Stumpp; H. Kaspar Binz; Patrick Amstutz

DARPins (designed ankyrin repeat proteins) are a novel class of binding molecules with the potential to overcome limitations of monoclonal antibodies, hence allowing novel therapeutic approaches. DARPins are small, single domain proteins (14 kDa) which can be selected to bind any given target protein with high affinity and specificity. These characteristics make them ideal agonistic, antagonistic or inhibitory drug candidates. Furthermore, DARPins can be engineered to carry various effector functions or combine multiple binding specificities, enabling completely new drug formats. Taken together, DARPins are a prominent member of the next generation of protein therapeutics with the potential to surpass existing antibody drugs.


Journal of Molecular Biology | 2008

Folding and Unfolding Mechanism of Highly Stable Full-Consensus Ankyrin Repeat Proteins

Svava K. Wetzel; Giovanni Settanni; Manca Kenig; H. Kaspar Binz; Andreas Plückthun

Full-consensus designed ankyrin repeat proteins were designed with one to six identical repeats flanked by capping repeats. These proteins express well in Escherichia coli as soluble monomers. Compared to our previously described designed ankyrin repeat protein library, randomized positions have now been fixed according to sequence statistics and structural considerations. Their stability increases with length and is even higher than that of library members, and those with more than three internal repeats are resistant to denaturation by boiling or guanidine hydrochloride. Full denaturation requires their heating in 5 M guanidine hydrochloride. The folding and unfolding kinetics of the proteins with up to three internal repeats were analyzed, as the other proteins could not be denatured. Folding is monophasic, with a rate that is nearly identical for all proteins ( approximately 400-800 s(-1)), indicating that essentially the same transition state must be crossed, possibly the folding of a single repeat. In contrast, the unfolding rate decreases by a factor of about 10(4) with increasing repeat number, directly reflecting thermodynamic stability in these extraordinarily slow denaturation rates. The number of unfolding phases also increases with repeat number. We analyzed the folding thermodynamics and kinetics both by classical two-state and three-state cooperative models and by an Ising-like model, where repeats are considered as two-state folding units that can be stabilized by interacting with their folded nearest neighbors. This Ising model globally describes both equilibrium and kinetic data very well and allows for a detailed explanation of the ankyrin repeat protein folding mechanism.


Journal of Molecular Biology | 2003

Designing repeat proteins: modular leucine-rich repeat protein libraries based on the mammalian ribonuclease inhibitor family.

Michael T. Stumpp; Patrik Forrer; H. Kaspar Binz; Andreas Plückthun

We present a novel approach to design repeat proteins of the leucine-rich repeat (LRR) family for the generation of libraries of intracellular binding molecules. From an analysis of naturally occurring LRR proteins, we derived the concept to assemble repeat proteins with randomized surface positions from libraries of consensus repeat modules. As a guiding principle, we used the mammalian ribonuclease inhibitor (RI) family, which comprises cytosolic LRR proteins known for their extraordinary affinities to many RNases. By aligning the amino acid sequences of the internal repeats of human, pig, rat, and mouse RI, we derived a first consensus sequence for the characteristic alternating 28 and 29 amino acid residue A-type and B-type repeats. Structural considerations were used to replace all conserved cysteine residues, to define less conserved positions, and to decide where to introduce randomized amino acid residues. The so devised consensus RI repeat library was generated at the DNA level and assembled by stepwise ligation to give libraries of 2-12 repeats. Terminal capping repeats, known to shield the continuous hydrophobic core of the LRR domain from the surrounding solvent, were adapted from human RI. In this way, designed LRR protein libraries of 4-14 LRRs (equivalent to 130-415 amino acid residues) were obtained. The biophysical analysis of randomly chosen library members showed high levels of soluble expression in the Escherichia coli cytosol, monomeric behavior as characterized by gel-filtration, and alpha-helical CD spectra, confirming the success of our design approach.


FEBS Letters | 2003

A novel strategy to design binding molecules harnessing the modular nature of repeat proteins

Patrik Forrer; Michael T. Stumpp; H. Kaspar Binz; Andreas Plückthun

Repeat proteins, such as ankyrin or leucine‐rich repeat proteins, are ubiquitous binding molecules, which occur, unlike antibodies, intra‐ and extracellularly. Their unique modular architecture features repeating structural units (repeats), which stack together to form elongated repeat domains displaying variable and modular target‐binding surfaces. Based on this modularity, we developed a novel strategy to generate combinatorial libraries of polypeptides with highly diversified binding specificities. This strategy includes the consensus design of self‐compatible repeats displaying variable surface residues and their random assembly into repeat domains. We envision that such repeat protein libraries will be highly valuable sources for novel binding molecules especially suitable for intracellular applications.


ChemBioChem | 2004

Consensus design of repeat proteins.

Patrik Forrer; H. Kaspar Binz; Michael T. Stumpp; Andreas Plückthun

Consensus design is a valuable protein‐engineering method that is based on statistical information derived from sequence alignments of homologous proteins. Recently, consensus design was adapted to repeat proteins. We discuss the potential of this novel repeat‐based approach for the design of consensus repeat proteins and repeat protein libraries and summarize recent results from such experiments.


Angiogenesis | 2013

Highly potent VEGF-A-antagonistic DARPins as anti-angiogenic agents for topical and intravitreal applications

Andreas Stahl; Michael T. Stumpp; Anja Schlegel; Savira Ekawardhani; Christina Lehrling; Gottfried Martin; Maya Gulotti-Georgieva; Denis Villemagne; Patrik Forrer; Hansjürgen T. Agostini; H. Kaspar Binz

The next-generation ophthalmic anti-VEGF therapeutics must aim at being superior to the currently available agents with regard to potency and improved drug delivery, while still being stable and safe to use at elevated concentrations. We show here the generation of a set of highly potent VEGF-A antagonistic DARPins (designed ankyrin repeat proteins) delivering these properties. DARPins with single-digit picomolar affinity to human VEGF-A were generated using ribosome display selections. Specific and potent human VEGF-A binding was confirmed by ELISA and endothelial cell sprouting assays. Cross-reactivity with VEGF-A of several species was confirmed by ELISA. Intravitreally injected DARPin penetrated into the retina and reduced fluorescein extravasation in a rabbit model of vascular leakage. In addition, topical DARPin application was found to diminish corneal neovascularization in a rabbit suture model, and to suppress laser-induced neovascularization in a rat model. Even at elevated doses, DARPins were safe to use. The fact that several DARPins are highly active in various assays illustrates the favorable class behavior of the selected binders. Anti-VEGF-A DARPins thus represent a novel class of highly potent and specific drug candidates for the treatment of neovascular eye diseases in both the posterior and the anterior eye chamber.

Collaboration


Dive into the H. Kaspar Binz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge