Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus G. Grütter is active.

Publication


Featured researches published by Markus G. Grütter.


Biochemical and Biophysical Research Communications | 2003

Structure-based design of aliskiren, a novel orally effective renin inhibitor

Jeanette Marjorie Wood; Jürgen Maibaum; Joseph Rahuel; Markus G. Grütter; Nissim-Claude Cohen; Vittorio Rasetti; Heinrich Rüger; Richard Goschke; Stefan Stutz; Walter Fuhrer; Walter Schilling; Pascal Rigollier; Yasuchika Yamaguchi; Frederic Cumin; Hans-Peter Baum; Christian Schnell; Peter Herold; Robert Mah; Chris Jensen; Eoin O’Brien; Alice Stanton; Martin P. Bedigian

Hypertension is a major risk factor for cardiovascular diseases such as stroke, myocardial infarction, and heart failure, the leading causes of death in the Western world. Inhibitors of the renin-angiotensin system (RAS) have proven to be successful treatments for hypertension. As renin specifically catalyses the rate-limiting step of the RAS, it represents the optimal target for RAS inhibition. Several peptide-like renin inhibitors have been synthesized previously, but poor pharmacokinetic properties meant that these compounds were not clinically useful. We employed a combination of molecular modelling and crystallographic structure analysis to design renin inhibitors lacking the extended peptide-like backbone of earlier inhibitors, for improved pharmacokinetic properties. This led to the discovery of aliskiren, a highly potent and selective inhibitor of human renin in vitro, and in vivo; once-daily oral doses of aliskiren inhibit renin and lower blood pressure in sodium-depleted marmosets and hypertensive human patients. Aliskiren represents the first in a novel class of renin inhibitors with the potential for treatment of hypertension and related cardiovascular diseases.


Current Opinion in Structural Biology | 2000

Caspases: key players in programmed cell death

Markus G. Grütter

Research in apoptosis has established a central role for caspases. The recent determination of structures of caspase-1, caspase-3 and caspase-8, together with biochemical studies, has greatly enhanced our understanding of the structure, function and specificity of these enzymes. This provides a basis for the further elucidation of the biological role of caspases and a guide to the design of selective inhibitors to treat caspase-mediated diseases.


Nature | 2011

TRIM5 is an innate immune sensor for the retrovirus capsid lattice

Thomas Pertel; Stéphane Hausmann; Damien Morger; Sara Züger; Jessica Guerra; Josefina Lascano; Christian Reinhard; Federico Santoni; Pradeep D. Uchil; Laurence Chatel; Aurélie Bisiaux; Matthew J Albert; Caterina Strambio-De-Castillia; Walther Mothes; Massimo Pizzato; Markus G. Grütter; Jeremy Luban

TRIM5 is a RING domain-E3 ubiquitin ligase that restricts infection by human immunodeficiency virus (HIV)-1 and other retroviruses immediately following virus invasion of the target cell cytoplasm. Antiviral potency correlates with TRIM5 avidity for the retrovirion capsid lattice and several reports indicate that TRIM5 has a role in signal transduction, but the precise mechanism of restriction is unknown. Here we demonstrate that TRIM5 promotes innate immune signalling and that this activity is amplified by retroviral infection and interaction with the capsid lattice. Acting with the heterodimeric, ubiquitin-conjugating enzyme UBC13–UEV1A (also known as UBE2N–UBE2V1), TRIM5 catalyses the synthesis of unattached K63-linked ubiquitin chains that activate the TAK1 (also known as MAP3K7) kinase complex and stimulate AP-1 and NFκB signalling. Interaction with the HIV-1 capsid lattice greatly enhances the UBC13–UEV1A-dependent E3 activity of TRIM5 and challenge with retroviruses induces the transcription of AP-1 and NF-κB-dependent factors with a magnitude that tracks with TRIM5 avidity for the invading capsid. Finally, TAK1 and UBC13–UEV1A contribute to capsid-specific restriction by TRIM5. Thus, the retroviral restriction factor TRIM5 has two additional activities that are linked to restriction: it constitutively promotes innate immune signalling and it acts as a pattern recognition receptor specific for the retrovirus capsid lattice.


Molecular Cell | 2003

Insights into the Regulatory Mechanism for Caspase-8 Activation

Mrudula Donepudi; Aengus Mac Sweeney; Christophe Briand; Markus G. Grütter

In the death receptor induced apoptotic pathway, caspase-8 autocatalytically cleaves itself at specific cleavage sites. To better understand the regulatory mechanisms behind caspase-8 activation, we compared active wild-type caspase-8 (wtC8) and an uncleavable form of procaspase-8 (uncleavable C8). We demonstrate that wtC8 predominantly exists as a monomer and dimerizes in a concentration and inhibitor binding-dependent fashion. The K(D) for dimeric wtC8 is approximately 50 micro M and decreases when inhibitor bound. Uncleavable C8 is mainly monomeric, but a small amount that dimerizes is as active as wtC8. Inhibitor binding does not favor dimerization but induces active site rearrangements in uncleavable C8. Our findings suggest that dimerization is the crucial factor for caspase-8 activation.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Designed to be stable: Crystal structure of a consensus ankyrin repeat protein

Andreas Kohl; H. Kaspar Binz; Patrik Forrer; Michael T. Stumpp; Andreas Plückthun; Markus G. Grütter

Ankyrin repeat (AR) proteins mediate innumerable protein–protein interactions in virtually all phyla. This finding suggested the use of AR proteins as designed binding molecules. Based on sequence and structural analyses, we designed a consensus AR with fixed framework and randomized interacting residues. We generated several combinatorial libraries of AR proteins consisting of defined numbers of this repeat. Randomly chosen library members are expressed in soluble form in the cytoplasm of Escherichia coli constituting up to 30% of total cellular protein and show high thermodynamic stability. We determined the crystal structure of one of those library members to 2.0-Å resolution, providing insight into the consensus AR fold. Besides the highly complementary hydrophobic repeat–repeat interfaces and the absence of structural irregularities in the consensus AR protein, the regular and extended hydrogen bond networks in the β-turn and loop regions are noteworthy. Furthermore, all residues found in the turn region of the Ramachandran plot are glycines. Many of these features also occur in natural AR proteins, but not in this rigorous and standardized fashion. We conclude that the AR domain fold is an intrinsically very stable and well-expressed scaffold, able to display randomized interacting residues. This scaffold represents an excellent basis for the design of novel binding molecules.


Cell Death & Differentiation | 2007

The SPRY domain of Pyrin, mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits proIL-1beta processing.

Stephanie Papin; Cuenin S; Agostini L; Martinon F; Werner S; Beer Hd; Christian Grütter; Markus G. Grütter; Jürg Tschopp

The autoinflammatory disorders Muckle–Wells syndrome, familial cold urtecaria and chronic infantile neurological cutaneous and articular syndrome are associated with mutations in the NALP3 (Cryopyrin) gene, which is the central platform of the proinflammatory caspase-1 activating complex, named the inflammasome. In patients with another autoinflammatory disorder, familial Mediterranean fever (FMF), mutations in the SPRY domain of the Pyrin protein are frequently found. Recent evidence suggests that Pyrin associates with ASC, an inflammasome component, via its Pyrin domain, thereby halting the inflammatory response. This interaction, however, does not explain the effects of mutations of the SPRY domain found in FMF patients. Here we show that the Pyrin SPRY domain not only interacts with NALP3, but also with caspase-1 and its substrate pro-interleukin(IL)-1β. Whereas a Pyrin knockdown results in increased caspase-1 activation and IL-1β secretion, overexpression of the SPRY domain alone blocks these processes. Thus Pyrin binds to several inflammasome components thereby modulating their activity.


PLOS Biology | 2006

Drug Export Pathway of Multidrug Exporter AcrB Revealed by DARPin Inhibitors

Gaby Sennhauser; Patrick Amstutz; Christophe Briand; Otso Storchenegger; Markus G. Grütter

The multidrug exporter AcrB is the inner membrane component of the AcrAB-TolC drug efflux system in Escherichia coli and is responsible for the resistance of this organism to a wide range of drugs. Here we describe the crystal structure of the trimeric AcrB in complex with a designed ankyrin-repeat protein (DARPin) inhibitor at 2.5-Å resolution. The three subunits of AcrB are locked in different conformations revealing distinct channels in each subunit. There seems to be remote conformational coupling between the channel access, exit, and the putative proton-translocation site, explaining how the proton motive force is used for drug export. Thus our structure suggests a transport pathway not through the central pore but through the identified channels in the individual subunits, which greatly advances our understanding of the multidrug export mechanism.


Nature Structural & Molecular Biology | 2012

Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation.

Michael Hohl; Christophe Briand; Markus G. Grütter; Markus A. Seeger

ATP-binding cassette (ABC) transporters shuttle a wide variety of molecules across cell membranes by alternating between inward- and outward-facing conformations, harnessing the energy of ATP binding and hydrolysis at their nucleotide binding domains (NBDs). Here we present the 2.9-Å crystal structure of the heterodimeric ABC transporter TM287–TM288 (TM287/288) from Thermotoga maritima in its inward-facing state. In contrast to previous studies, we found that the NBDs only partially separate, remaining in contact through an interface involving conserved motifs that connect the two ATP hydrolysis sites. We observed AMP-PNP binding to the degenerate catalytic site, which deviates from the consensus sequence in the same positions as the eukaryotic homologs CFTR and TAP1–TAP2 (TAP1/2). The TM287/288 structure provides unprecedented insights into the mechanism of heterodimeric ABC exporters and will enable future studies on this large transporter superfamily.


Journal of Molecular Biology | 2009

Crystal Structure of the Multidrug Exporter Mexb from Pseudomonas Aeruginosa.

Gaby Sennhauser; Magdalena A. Bukowska; Christophe Briand; Markus G. Grütter

We report here the crystal structure of the Pseudomonas aeruginosa multidrug exporter MexB, an intensively studied member of the resistance-nodulation-cell division family of secondary active transporters, at 3.0 A. MexB forms an asymmetric homotrimer where each subunit adopts a different conformation representing three snapshots of the transport cycle similar to the recently determined structures of its close homologue AcrB from Escherichia coli, so far the sole structurally characterized member of the superfamily. As for AcrB, the conformations of two subunits can be clearly assigned to either the binding step or the extrusion step in the transport process. Unexpectedly, a remarkable conformational shift in the third subunit is observed in MexB, which has potential implications for the assembly of the tripartite MexAB-OprM drug efflux system. Furthermore, an n-dodecyl-d-maltoside molecule was found bound to the internal multidrug-binding cavity, which might indicate that MexB binds and transports detergent molecules as substrates. As the only missing piece of the puzzle in the MexAB-OprM system, the X-ray structure of MexB completes the molecular picture of the major pump mediating intrinsic and acquired multidrug resistance in P. aeruginosa.


The EMBO Journal | 2003

Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase

Guido Capitani; Daniela De Biase; Caterina Aurizi; Heinz Gut; Francesco Bossa; Markus G. Grütter

Glutamate decarboxylase is a vitamin B6‐dependent enzyme, which catalyses the decarboxylation of glutamate to γ‐aminobutyrate. In Escherichia coli, expression of glutamate decarboxylase (GadB), a 330 kDa hexamer, is induced to maintain the physiological pH under acidic conditions, like those of the passage through the stomach en route to the intestine. GadB, together with the antiporter GadC, constitutes the gad acid resistance system, which confers the ability for bacterial survival for at least 2 h in a strongly acidic environment. GadB undergoes a pH‐dependent conformational change and exhibits an activity optimum at low pH. We determined the crystal structures of GadB at acidic and neutral pH. They reveal the molecular details of the conformational change and the structural basis for the acidic pH optimum. We demonstrate that the enzyme is localized exclusively in the cytoplasm at neutral pH, but is recruited to the membrane when the pH falls. We show by structure‐based site‐directed mutagenesis that the triple helix bundle formed by the N‐termini of the protein at acidic pH is the major determinant for this behaviour.

Collaboration


Dive into the Markus G. Grütter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge