H. Krishna
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by H. Krishna.
Nanotechnology | 2010
H. Krishna; Ritesh Sachan; J. Strader; Christopher Favazza; Mikhail Khenner; Ramki Kalyanaraman
We show here that the morphological pathway of spontaneous dewetting of ultrathin Ag films on SiO2 under nanosecond laser melting is dependent on film thickness. For films with thickness h of 2 nm < or = h < or = 9.5 nm, the morphology during the intermediate stages of dewetting consisted of bicontinuous structures. For films with 11.5 nm < or = h < or = 20 nm, the intermediate stages consisted of regularly sized holes. Measurement of the characteristic length scales for different stages of dewetting as a function of film thickness showed a systematic increase, which is consistent with the spinodal dewetting instability over the entire thickness range investigated. This change in morphology with thickness is consistent with observations made previously for polymer films (Sharma and Khanna 1998 Phys. Rev. Lett. 81 3463-6; Seemann et al 2001 J. Phys.: Condens. Matter 13 4925-38). Based on the behavior of free energy curvature that incorporates intermolecular forces, we have estimated the morphological transition thickness for the intermolecular forces for Ag on SiO2. The theory predictions agree well with observations for Ag. These results show that it is possible to form a variety of complex Ag nanomorphologies in a consistent manner, which could be useful in optical applications of Ag surfaces, such as in surface enhanced Raman sensing.
Nature Materials | 2010
Mukund Vasudevan; Eric Buse; Donglai Lu; H. Krishna; Ramki Kalyanaraman; Amy Q. Shen; Bamin Khomami; Radhakrishna Sureshkumar
Self-assembly of surfactant molecules into micelles of various shapes and forms has been extensively used to synthesize soft nanomaterials. Translucent solutions containing rod-like surfactant micelles can self-organize under flow to form viscoelastic gels. This flow-induced structure (FIS) formation has excited much fundamental research and pragmatic interest as a cost-effective manufacturing route for active nanomaterials. However, its practical impact has been very limited because all reported FIS transitions are reversible because the gel disintegrates soon after flow stoppage. We present a new microfluidics-assisted robust laminar-flow process, which allows for the generation of extension rates many orders of magnitude greater than is realizable in conventional devices, to produce purely flow-induced permanent nanogels. Cryogenic transmission electron microscopy imaging of the gel reveals a partially aligned micelle network. The critical flow rate for gel formation is consistent with the Turner-Cates fusion mechanism, proposed originally to explain reversible FIS formation in rod-like micelle solutions.
Applied Physics Letters | 2006
Christopher Favazza; Justin Trice; H. Krishna; Ramki Kalyanaraman; Radhakrishna Sureshkumar
Laser irradiation of ultrathin Co films leads to pattern formation by dewetting with short-range order (SRO) as well as long-range order (LRO). When a 1.5nm thick Co film is irradiated by a single laser beam, a monomodal size distribution of particles with average diameter of 31±10nm and nearest-neighbor spacing of 75nm is observed. Moreover, melting by two-beam interference irradiation produces LRO as well as SRO giving a quasi-two-dimensional arrangement of nanoparticles. The SRO is attributed to spinodal dewetting while the LRO is conjectured to be induced by in-plane interfacial tension gradients. Laser-induced dewetting of metals could be a simple technique to fabricate ordered metal nanoarrays.
ACS Nano | 2011
H. Krishna; N. Shirato; Sagar Yadavali; Ritesh Sachan; Jeremy Strader; Ramki Kalyanaraman
Surfaces made from composite nanostructured materials are potential multifunctional platforms for detection, sensing, and energy harvesting in biological and inorganic systems. However, robust and cost-effective synthesis routes are required to create the required arrays of nanostructures with tailorable size, morphology, and composition. Here we show that self-organization via spontaneous pattern formation in nanometer thick bilayer liquid films could lead to such nanostructure arrays. Experimentally, bilayers of immiscible metallic liquids show different self-organized patterning characteristics based on their order of arrangement on a substrate. Energy rate theory based on equating the rate of free energy change to viscous dissipation was used to explain this result. The different bilayer arrangements change the signs of intermolecular interactions, which changes the mode of coupled deformations and the patterning characteristics. Patterning length scale characteristics from nanosecond pulsed laser induced self-organization of Ag and Co liquids on SiO₂ substrate were in good agreement with theory.
Nanotechnology | 2012
Ritesh Sachan; Sagar Yadavali; N. Shirato; H. Krishna; V Ramos; Gerd Duscher; Stephen J. Pennycook; A. K. Gangopadhyay; Hernando Garcia; Ramki Kalyanaraman
We demonstrate a promising synthesis route based on pulsed laser dewetting of bilayer films (Ag and Co) to make bimetallic nanoparticle arrays. By combining experiment and theory we establish a parameter space for the independent control of composition and diameter for the bimetallic nanoparticles. As a result, physical properties, such as the localized surface plasmon resonance (LSPR), that depend on particle size and composition can be readily tuned over a wavelength range one order of magnitude greater than for pure Ag nanoparticles. The LSPR detection sensitivity of the bimetallic nanoparticles with narrow size distribution was found to be high-comparable with pure Ag (∼60 nm/RIU). Moreover, they showed significantly higher long-term environmental stability over pure Ag.
ACS Nano | 2014
Ritesh Sachan; Abhinav Malasi; Jingxuan Ge; Sagar Yadavali; H. Krishna; A. K. Gangopadhyay; Hernando Garcia; Gerd Duscher; Ramki Kalyanaraman
Interaction of photons with matter at length scales far below their wavelengths has given rise to many novel phenomena, including localized surface plasmon resonance (LSPR). However, LSPR with narrow bandwidth (BW) is observed only in a select few noble metals, and ferromagnets are not among them. Here, we report the discovery of LSPR in ferromagnetic Co and CoFe alloy (8% Fe) in contact with Ag in the form of bimetallic nanoparticles prepared by pulsed laser dewetting. These plasmons in metal-ferromagnetic nanostructures, or ferroplasmons (FP) for short, are in the visible spectrum with comparable intensity and BW to those of the LSPRs from the Ag regions. This finding was enabled by electron energy-loss mapping across individual nanoparticles in a monochromated scanning transmission electron microscope. The appearance of the FP is likely due to plasmonic interaction between the contacting Ag and Co nanoparticles. Since there is no previous evidence for materials that simultaneously show ferromagnetism and such intense LSPRs, this discovery may lead to the design of improved plasmonic materials and applications. It also demonstrates that materials with interesting plasmonic properties can be synthesized using bimetallic nanostructures in contact with each other.
Journal of Applied Physics | 2008
H. Krishna; C. Miller; L. Longstreth-Spoor; Z. Nussinov; A. K. Gangopadhyay; Ramki Kalyanaraman
Nanosecond pulsed laser melting of ultrathin metal films can lead to self-organized arrays of spherical nanoparticles. We have applied this technique to assemble arrays of nanoparticles of the soft elemental ferromagnet Co on SiO2. Surface morphology studies by using scanning electron microscopy and atomic force microscopy established that the nanoparticles were nearly hemispherical with an average contact angle of ∼104±22°. Magnetic properties of these nanoparticles in the size range of 30–250nm diameter were investigated by magnetic force microscopy under zero applied field in conjunction with simulations of the magnetic tip-particle interaction. Particles up to 180nm diameter were found to be single domain with the magnetization direction oriented predominantly in-plane for the smaller particles (⩽75nm) and out-of-plane for the larger particles (⩽180nm). Multidomain behavior was observed for particles larger than 180nm. Magnetic hysteresis measurements at room temperature confirmed that the arrays cons...
Journal of Applied Physics | 2010
N. Shirato; H. Krishna; Ramki Kalyanaraman
The spontaneous pattern formation via the classical spinodal dewetting instability in ultrathin films is a nonlinear process. However, the physical manifestation of the instability in terms of characteristic length and time scales can be described by a linearized form of the initial conditions of the film’s dynamics. Alternately, the thermodynamic (TH) approach based on equating the rate of free energy decrease to the rate of frictional loss via viscous dissipation [de Gennes, C. R. Acad. Paris 298, 111 (1984)] can give similar information. Here we have evaluated dewetting in the presence of film-thickness- (h) dependent thermocapillary forces. Such a situation can be found during pulsed laser melting of ultrathin metal films where nanoscale effects lead to a local h-dependent temperature. The TH approach provides an analytical description of this thermocapillary dewetting. The results of this approach agree with those from linear theory and experimental observations provided the minimum dissipation is eq...
Applied Physics Letters | 2006
Hernando Garcia; H. Krishna; Ramki Kalyanaraman
Selecting nanocomposites for photonic switching applications requires optimizing their thermal, nonlinear, and two-photon absorption characteristics. The authors simplify this step by defining a compound figure of merit (FOMC) for nanocomposites of noble metals in dielectric based on criteria that limit these structures in photonic applications, i.e., thermal heating and two-photon absorption. The device independent results predict extremely large values of FOMC for a specific combination of the metal and insulator dielectric constants given by ϵh=(ϵ1−ϵ2)∕2, where ϵh is the dielectric constant of the host and ϵ1 and ϵ2 are the real and imaginary parts for the metal.
Proceedings of SPIE, the International Society for Optical Engineering | 2007
Christopher Favazza; H. Krishna; Radhakrishna Sureshkumar; Ramki Kalyanaraman
Robust nanomanufacturing methodologies are crucial towards realizing simple and cost-effective products. Here we discuss nanofabrication of ordered metal nanoparticles through pulsed-laser-induced self-organization. When ultrathin metal films are exposed to short laser pulses, spontaneous pattern formation results under appropriate conditions. Under uniform laser irradiation two competing modes of self-organization are observed. One, a thin film hydrodynamic dewetting instability due to the competition between surface tension and attractive van derWaals interactions, results in nanoparticles with well-defined and predictable interparticle spacings and sizes with short range spatial order. The second, thermocapillary flow due to interference between the incident beam and a scattered surface wave, results in laser induced periodic surface structures. Non-uniform laser irradiation, such as by 2-beam laser interference irradiation, initiates a tunable thermocapillary effect in the film giving rise to nanowires, and continued laser irradiation leads to a Rayleigh-like breakup of the nanowires producing nanoparticles with spatial long-range and short-range order. These self-organizing approaches appear to be applicable to a variety of metal films, including Co, Cu, Ag, Fe, Ni, Pt, Zn, Ti, V and Mn. These results suggest that laser-induced self-organization in thin films could be an attractive route to nanomanufacture well-defined nanoparticle arrangements for applications in optical information processing, sensing and solar energy harvesting.