H. Nann
Indiana University Bloomington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by H. Nann.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2008
Christopher Lavelle; David V. Baxter; A. Bogdanov; V. P. Derenchuk; H. Kaiser; M. Leuschner; M. A. Lone; W. Lozowski; H. Nann; B. v. Przewoski; N. Remmes; T. Rinckel; Y. Shin; W. M. Snow; P. E. Sokol
Abstract The Low Energy Neutron Source (LENS) is an accelerator-based pulsed cold neutron facility under construction at the Indiana University Cyclotron Facility (IUCF). The idea behind LENS is to produce pulsed cold neutron beams starting with ∼ MeV neutrons from (p,n) reactions in Be which are moderated to meV energies and extracted from a small solid angle for use in neutron instruments which can operate efficiently with relatively broad ( ∼ 1 ms ) neutron pulse widths. Although the combination of the features and operating parameters of this source is unique at present, the neutronic design possesses several features similar to those envisioned for future neutron facilities such as long-pulsed spallation sources (LPSS) and very cold neutron (VCN) sources. We describe the underlying ideas and design details of the target/moderator/reflector system (TMR) and compare measurements of its brightness, energy spectrum, and emission time distribution under different moderator configurations with MCNP simulations. Brightness measurements using an ambient temperature water moderator agree with MCNP simulations within the 20% accuracy of the measurement. The measured neutron emission time distribution from a solid methane moderator is in agreement with simulation and the cold neutron flux is sufficient for neutron scattering studies of materials. We describe some possible modifications to the existing design which would increase the cold neutron brightness with negligible effect on the emission time distribution.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2004
G. S. Mitchell; C. Blessinger; J. D. Bowman; T. E. Chupp; Kevin Patrick Coulter; M.T. Gericke; G. L. Jones; Mark Bancroft Leuschner; H. Nann; S. A. Page; S. I. Penttilä; T. B. Smith; W. M. Snow; W. S. Wilburn
Abstract An apparatus for measuring parity-violating asymmetries in gamma-ray emission following polarized cold neutron capture was constructed as a 1/10th scale test of the design for the forthcoming n → + p → d + γ experiment at LANSCE. The elements of the polarized neutron beam, including a polarized 3 He neutron spin filter and a radio frequency neutron spin rotator, are described. Using CsI(Tl) detectors and photodiode current mode readout, measurements were made of asymmetries in gamma-ray emission following neutron capture on 35 Cl , 113 Cd , and 139 La targets. Upper limits on the parity-allowed asymmetry s n ·( k γ × k n ) were set at the level of 7×10 −6 for all three targets. Parity-violating asymmetries s n · k γ were observed in 35 Cl , A γ =(−29.1±6.7)×10 −6 , and 139 La , A γ =(−15.5±7.1)×10 −6 , values consistent with previous measurements.
Physical Review B | 2015
K. B. Grammer; R. Alarcon; L. Barrón-Palos; D. Blyth; J. D. Bowman; J. Calarco; C. Crawford; K. Craycraft; D. Evans; N. Fomin; J. Fry; M. T. Gericke; R. C. Gillis; G. L. Greene; J. Hamblen; C. Hayes; S. Kucuker; R. Mahurin; M. Maldonado-Velázquez; E. Martin; M. McCrea; P.E. Mueller; M. Musgrave; H. Nann; S. I. Penttilä; W. M. Snow; Z. Tang; W. S. Wilburn
Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function
Physical Review C | 2006
M. T. Gericke; J. D. Bowman; R. Carlini; Tim Chupp; Kevin Patrick Coulter; M. Dabaghyan; M. Dawkins; D. Desai; Stuart J. Freedman; Thomas R. Gentile; R. C. Gillis; G. L. Greene; F. W. Hersman; Takashi Ino; G. L. Jones; M. Kandes; B. Lauss; M. Leuschner; W. R. Lozowski; R. Mahurin; M. Mason; Y. Masuda; G. S. Mitchell; S. Muto; H. Nann; S. A. Page; S. I. Penttilä; W. D. Ramsay; S. Santra; P.‐N. Seo
g(r)
Nuclear Physics | 2003
Y. Masuda; J. D. Bowman; R. Carlini; T. Case; T. E. Chupp; Kevin Patrick Coulter; S. J. Freedman; Thomas R. Gentile; M. Gericke; G. L. Greene; F.W. Hersmann; Takashi Ino; S. Ishimoto; G. L. Jones; M. Leuschner; G. S. Mitchell; K. Morimoto; S. Muto; H. Nann; S. A. Page; S.I. Pentilla; W. D. Ramsay; E. I. Sharapov; T. B. Smith; W. M. Snow; S.W. Wilburn; Y.W. Yuan
inferred from neutron scattering measurements of the differential cross section
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2004
G. S. Mitchell; Christopher S Blessinger; J. D. Bowman; T. E. Chupp; Kevin Patrick Coulter; M. Gericke; G. L. Jones; Mark Bancroft Leuschner; H. Nann; S. A. Page; S. I. Penttilä; T. B. Smith; W. M. Snow; W. S. Wilburn
\frac{d\ensuremath{\sigma}}{d\ensuremath{\Omega}}
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2004
G. S. Mitchell; Christopher S Blessinger; J. D. Bowman; T. E. Chupp; Kevin Patrick Coulter; M. T. Gericke; Gordon Lyman Jones; Mark Bancroft Leuschner; H. Nann; S. A. Page; S. I. Penttilä; T. B. Smith; W. M. Snow; W. S. Wilburn
from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2000
W. M. Snow; J. D. Bowman; S. I. Penttilä; J. N. Knudson; Kevin Patrick Coulter; B. K. Fujikawa; Y. Masuda; T. E. Chupp; G. L. Greene; G. L. Morgan; D.R. Rich; V. W. Yuan; Christopher S Blessinger; H. Nann; Gary Hansen; Robert C. Welsh; E. I. Sharapov; Kimio Morimoto; Anatoliy V. Bazhenov; F. E. Wietfeldt; Thomas R. Gentile; G. L. Jones; Mark Bancroft Leuschner; Y. Matsuda; S.K. Lamoureaux; Anatolii P. Serebrov; Gary E. Hogan; S. J. Freedman; E. Kolomensky; T. B. Smith
Parity-odd asymmetries in the electromagnetic decays of compound nuclei can sometimes be amplified above values expected from simple dimensional estimates by the complexity of compound nuclear states. Using a statistical approach, we estimate the root-mean-square of the distribution of expected parity-odd correlations s(vector sign){sub n}{center_dot}k(vector sign){sub {gamma}}, where s(vector sign){sub n} is the neutron spin and k(vector sign){sub {gamma}} is the momentum of the {gamma}, in the integrated {gamma} spectrum from the capture of cold polarized neutrons on Al, Cu, and In. We present measurements of the asymmetries in these and other nuclei. Based on our calculations, large enhancements of asymmetries were not predicted for the studied nuclei and the statistical estimates are consistent with our measured upper bounds on the asymmetries.
Physical Review Letters | 1977
G. S. Blanpied; W.R. Coker; R. P. Liljestrand; L. Ray; G. W. Hoffman; D.G. Madland; C. L. Morris; J. C. Pratt; James E. Spencer; H. A. Thiessen; Norton M. Hintz; G. S. Kyle; M. A. Oothoudt; T. S. Bauer; J.C. Fong; G. Igo; R. J. Ridge; C.A. Whitten; Thomas Kozlowski; D. K. McDaniels; P. Varghese; P. M. Lang; H. Nann; Kamal K. Seth; C. Glashausser
Abstract An experiment to measure γ-ray asymmetry A γ with a high precision in neutron-proton radiative capture is under construction at LANSCE. The experiment will determine the weak pion-nucleon coupling constant H π 1 ,, 30% of its predicted value.
Physical Review Letters | 1977
G. S. Blanpied; W.R. Coker; R. P. Liljestrand; L. Ray; G. W. Hoffman; D.G. Madland; C. L. Morris; J. C. Pratt; James E. Spencer; H. A. Thiessen; Norton M. Hintz; G. S. Kyle; Oothoudt; T. S. Bauer; J.C. Fong; G. Igo; R. J. Ridge; C.A. Whitten; Thomas Kozlowski; D. K. McDaniels; P. Varghese; P. M. Lang; H. Nann; Kamal K. Seth; C. Glashausser
Abstract An apparatus for measuring parity-violating asymmetries in gamma-ray emission following polarized cold neutron capture was constructed as a 1/10th scale test of the design for the forthcoming n → + p → d + γ experiment at LANSCE. The elements of the polarized neutron beam, including a polarized 3 He neutron spin filter and a radio frequency neutron spin rotator, are described. Using CsI(Tl) detectors and photodiode current mode readout, measurements were made of asymmetries in gamma-ray emission following neutron capture on 35 Cl , 113 Cd , and 139 La targets. Upper limits on the parity-allowed asymmetry s n ·( k γ × k n ) were set at the level of 7×10 −6 for all three targets. Parity-violating asymmetries s n · k γ were observed in 35 Cl , A γ =(−29.1±6.7)×10 −6 , and 139 La , A γ =(−15.5±7.1)×10 −6 , values consistent with previous measurements.