H R Horvitz
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by H R Horvitz.
Nature | 2000
Brenda J. Reinhart; Frank J. Slack; Michael Basson; Amy E. Pasquinelli; Bettinger Jc; Ann E. Rougvie; H R Horvitz; Gary Ruvkun
The C. elegans heterochronic gene pathway consists of a cascade of regulatory genes that are temporally controlled to specify the timing of developmental events. Mutations in heterochronic genes cause temporal transformations in cell fates in which stage-specific events are omitted or reiterated. Here we show that let-7 is a heterochronic switch gene. Loss of let-7 gene activity causes reiteration of larval cell fates during the adult stage, whereas increased let-7 gene dosage causes precocious expression of adult fates during larval stages. let-7 encodes a temporally regulated 21-nucleotide RNA that is complementary to elements in the 3′ untranslated regions of the heterochronic genes lin-14, lin-28, lin-41, lin-42 and daf-12, indicating that expression of these genes may be directly controlled by let-7. A reporter gene bearing the lin-41 3′ untranslated region is temporally regulated in a let-7-dependent manner. A second regulatory RNA, lin-4, negatively regulates lin-14 and lin-28 through RNA–RNA interactions with their 3′ untranslated regions. We propose that the sequential stage-specific expression of the lin-4 and let-7 regulatory RNAs triggers transitions in the complement of heterochronic regulatory proteins to coordinate developmental timing.
Nature | 1997
Ding Xue; H R Horvitz
The Caenorhabditis elegans gene ced-9 prevents cells from undergoing programmed cell death and encodes a protein similar to the mammalian cell-death inhibitor Bcl-2 (refs 1,2,3,4,5,6,7). We show here that the CED-9 protein is a substrate for the C. elegans cell-death protease CED-3 (refs 8, 9), which is a member of a family of cysteine proteases first defined by CED-3 and human interleukin-1β converting enzyme (ICE). CED-9 can be cleaved by CED-3 at two sites near its amino terminus, and the presence of at least one of these sites is important for complete protection by CED-9 against cell death. Cleavage of CED-9 by CED-3 generates a carboxy-terminal product that resembles Bcl-2 in sequence and in function. Bcl-2 and the baculovirus protein p35, which inhibits cell death in different species through a mechanism that depends on the presence of its cleavage site for the CED-3/ICE family of proteases,, inhibit cell death additively in C. elegans. Our results indicate that CED-9 prevents programmed cell death in C.elegans through two distinct mechanisms: first, CED-9 may, by analogy with p35 (refs 9, 17), directly inhibit the CED-3 protease by an interaction involving the CED-3 cleavage sites in CED-9; second, CED-9 may directly or indirectly inhibit CED-3 by means of a protective mechanism similar to that used by mammalian Bcl-2.
Nature | 1995
Ding Xue; H R Horvitz
Genetics | 1991
R E Ellis; D M Jacobson; H R Horvitz
Nature | 1990
Greg J. Beitel; Scott G. Clark; H R Horvitz
Genes & Development | 1996
Ding Xue; S Shaham; H R Horvitz
Genetics | 1994
Scott G. Clark; Xiaowei Lu; H R Horvitz
Genetics | 1993
Leon Avery; Cornelia I. Bargmann; H R Horvitz
Genetics | 1998
Jacobs D; Greg J. Beitel; Scott G. Clark; H R Horvitz; Kerry Kornfeld
Genetics | 1999
S Shaham; Peter W. Reddien; B Davies; H R Horvitz