H. Radkins
National Science Foundation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by H. Radkins.
Classical and Quantum Gravity | 2015
F. Matichard; B. Lantz; R. Mittleman; K. Mason; J. S. Kissel; B. Abbott; S. Biscans; J. McIver; R. Abbott; S. Abbott; E. Allwine; S. Barnum; J. Birch; C. Celerier; Damon A. Clark; D. C. Coyne; D. DeBra; R. T. Derosa; M. Evans; S. Foley; P. Fritschel; J. A. Giaime; C. Gray; G. Grabeel; J. Hanson; C. Hardham; M. Hillard; W. Hua; C. Kucharczyk; M. Landry
The new generation of gravitational waves detectors require unprecedented levels of isolation from seismic noise. This article reviews the seismic isolation strategy and instrumentation developed for the Advanced LIGO observatories. It summarizes over a decade of research on active inertial isolation and shows the performance recently achieved at the Advanced LIGO observatories. The paper emphasizes the scientific and technical challenges of this endeavor and how they have been addressed. An overview of the isolation strategy is given. It combines multiple layers of passive and active inertial isolation to provide suitable rejection of seismic noise at all frequencies. A detailed presentation of the three active platforms that have been developed is given. They are the hydraulic pre-isolator, the single-stage internal isolator and the two-stage internal isolator. The architecture, instrumentation, control scheme and isolation results are presented for each of the three systems. Results show that the seismic isolation sub-system meets Advanced LIGOs stringent requirements and robustly supports the operation of the two detectors.
ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference | 2012
F. Matichard; K. Mason; R. Mittleman; B. Lantz; Ben Abbott; M. MacInnis; Adrien LeRoux; Michael Hillard; Celine Ramet; S. Barnum; Andy Stein; S. Foley; H. Radkins; Jeff Kissel; S. Biscans; Vincent Lhuillier
The control bandwidth and performance of active vibration isolation systems are usually directly related to the system dynamic characteristics. In this paper, we present results from a 4 years study carried out to improve the dynamical response and control performance on the two-stage isolator designed for Advanced LIGO detectors. The paper will focus on the platform’s first stage to illustrate prototyping, optimization, final design and the experimental results obtained during this program. The system concept, architecture and prototype will be presented. The factors initially limiting the prototype’s performance will be analyzed. Solutions based on sensors relocation, payload reduction, structural stiffening and passive techniques to damp the residual high frequency flexible modes will be presented. Experimental results obtained with the prototype will be compared with the system’s final version. The series of improvement obtained help not only to increase the system’s bandwidth, robustness and performance but also to simplify and speed up the control commissioning, which is very important for the Advanced LIGO project that will be using 5 of these platforms in each of its 3 detectors.Copyright
Classical and Quantum Gravity | 2018
S. Biscans; J. Warner; R. Mittleman; C. C. Buchanan; M. W. Coughlin; M. Evans; H. Gabbard; J. Harms; B. Lantz; N. Mukund; A. Pele; Charles Pezerat; Pascal Picart; H. Radkins; T. J. Shaffer
Advanced gravitational-wave detectors such as the Laser Interferometer Gravitational-Wave Observatories (LIGO) require an unprecedented level of isolation from the ground. When in operation, they are expected to observe changes in the space-time continuum of less than one thousandth of the diameter of a proton. Strong teleseismic events like earthquakes disrupt the proper functioning of the detectors, and result in a loss of data until the detectors can be returned to their operating states. An earthquake early-warning system, as well as a prediction model have been developed to help understand the impact of earthquakes on LIGO. This paper describes a control strategy to use this early-warning system to reduce the LIGO downtime by 30%. It also presents a plan to implement this new earthquake configuration in the LIGO automation system.
Precision Engineering-journal of The International Societies for Precision Engineering and Nanotechnology | 2015
F. Matichard; B. Lantz; K. Mason; R. Mittleman; B. Abbott; S. Abbott; E. Allwine; S. Barnum; J. Birch; S. Biscans; Damon A. Clark; D. C. Coyne; D. DeBra; R. T. Derosa; S. Foley; P. Fritschel; J. A. Giaime; C. Gray; G. Grabeel; J. Hanson; M. Hillard; J. S. Kissel; C. Kucharczyk; A. Le Roux; V. Lhuillier; M. MacInnis; B. O’Reilly; D. J. Ottaway; H. Paris; M. Puma
Precision Engineering-journal of The International Societies for Precision Engineering and Nanotechnology | 2015
F. Matichard; B. Lantz; K. Mason; R. Mittleman; B. Abbott; S. Abbott; E. Allwine; S. Barnum; J. Birch; S. Biscans; Damon A. Clark; D. C. Coyne; D. DeBra; R. T. Derosa; S. Foley; P. Fritschel; J. A. Giaime; C. Gray; G. Grabeel; J. Hanson; M. Hillard; J. S. Kissel; C. Kucharczyk; A. Le Roux; V. Lhuillier; M. MacInnis; B. O’Reilly; D. J. Ottaway; H. Paris; M. Puma
Bulletin of the Seismological Society of America | 2017
K. Venkateswara; Charles Hagedorn; Jens H. Gundlach; Jeffery Kissel; J. Warner; H. Radkins; T. J. Shaffer; B. Lantz; R. Mittleman; F. Matichard; Robert Schofield
Archive | 2005
Robert Schofield; John Worden; Richard McCarthy; Doug Cook; H. Radkins; Josh Dalrymple