Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Ross Anderson is active.

Publication


Featured researches published by H. Ross Anderson.


Epidemiology | 2008

Heat effects on mortality in 15 European cities

Michela Baccini; Annibale Biggeri; Gabriele Accetta; Tom Kosatsky; Klea Katsouyanni; Antonis Analitis; H. Ross Anderson; Luigi Bisanti; Daniela D'Ippoliti; Jana Danova; Bertil Forsberg; Sylvia Medina; Anna Páldy; Daniel Rabczenko; Christian Schindler; Paola Michelozzi

BACKGROUNDnHigher incidence rates of childhood cancer and particularly leukemia have been observed in regions with higher radon levels, but case-control studies have given inconsistent results. We tested the hypothesis that domestic radon exposure increases the risk for childhood cancer.nnnMETHODSnWe identified 2400 incident cases of leukemia, central nervous system tumor, and malignant lymphoma diagnosed in children between 1968 and 1994 in the Danish Cancer Registry. Control children (n = 6697) were selected from the Danish Central Population Registry. Radon levels in residences of children and the cumulated exposure of each child were calculated as the product of exposure level and time, for each address occupied during childhood.nnnRESULTSnCumulative radon exposure was associated with risk for acute lymphoblastic leukemia (ALL), with rate ratios of 1.21 (95% confidence interval = 0.98-1.49) for levels of 0.26 to 0.89 x 10(3) Bq/m3-years and 1.63 (1.05-2.53) for exposure to >0.89 x 10(3) Bq/m3-years, when compared with <0.26 x 10(3) Bq/m3-years. A linear dose-response analysis showed a 56% increase in the rate of ALL per 10(3) Bq/m3-years increase in exposure. The association with ALL persisted in sensitivity analyses and after adjustment for potential confounders. No association was found with the other types of childhood cancer.nnnCONCLUSIONSnThis study suggests that domestic radon exposure increases the risk for ALL during childhood but not for other childhood cancers.Background: Epidemiologic studies show that high temperatures are related to mortality, but little is known about the exposure-response function and the lagged effect of heat. We report the associations between daily maximum apparent temperature and daily deaths during the warm season in 15 European cities. Methods: The city-specific analyses were based on generalized estimating equations and the city-specific results were combined in a Bayesian random effects meta-analysis. We specified distributed lag models in studying the delayed effect of exposure. Time-varying coefficient models were used to check the assumption of a constant heat effect over the warm season. Results: The city-specific exposure-response functions have a V shape, with a change-point that varied among cities. The meta-analytic estimate of the threshold was 29.4°C for Mediterranean cities and 23.3°C for north-continental cities. The estimated overall change in all natural mortality associated with a 1°C increase in maximum apparent temperature above the city-specific threshold was 3.12% (95% credibility interval = 0.60% to 5.72%) in the Mediterranean region and 1.84% (0.06% to 3.64%) in the north-continental region. Stronger associations were found between heat and mortality from respiratory diseases, and with mortality in the elderly. Conclusions: There is an important mortality effect of heat across Europe. The effect is evident from June through August; it is limited to the first week following temperature excess, with evidence of mortality displacement. There is some suggestion of a higher effect of early season exposures. Acclimatization and individual susceptibility need further investigation as possible explanations for the observed heterogeneity among cities.


The Lancet | 2009

Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants

Kirk R. Smith; Michael Jerrett; H. Ross Anderson; Richard T. Burnett; Vicki Stone; Richard G. Derwent; Richard Atkinson; Aaron Cohen; S. B. Shonkoff; Daniel Krewski; C. Arden Pope; Michael J. Thun; George D. Thurston

In this report we review the health effects of three short-lived greenhouse pollutants-black carbon, ozone, and sulphates. We undertook new meta-analyses of existing time-series studies and an analysis of a cohort of 352,000 people in 66 US cities during 18 years of follow-up. This cohort study provides estimates of mortality effects from long-term exposure to elemental carbon, an indicator of black carbon mass, and evidence that ozone exerts an independent risk of mortality. Associations among these pollutants make drawing conclusions about their individual health effects difficult at present, but sulphate seems to have the most robust effects in multiple-pollutant models. Generally, the toxicology of the pure compounds and their epidemiology diverge because atmospheric black carbon, ozone, and sulphate are associated and could interact with related toxic species. Although sulphate is a cooling agent, black carbon and ozone could together exert nearly half as much global warming as carbon dioxide. The complexity of these health and climate effects needs to be recognised in mitigation policies.


Respirology | 2012

Does outdoor air pollution induce new cases of asthma? Biological plausibility and evidence; a review.

Alison M. Gowers; Paul Cullinan; Jon Ayres; H. Ross Anderson; David P. Strachan; Stephen T. Holgate; Inga C. Mills; Robert L. Maynard

It is widely accepted that air pollution can exacerbate asthma in those who already have the condition. What is less clear is whether air pollution can contribute to the initiation of new cases of asthma. Mechanistic evidence from toxicological studies, together with recent information on genes that predispose towards the development of asthma, suggests that this is biologically plausible, particularly in the light of the current understanding of asthma as a complex disease with a variety of phenotypes. The epidemiological evidence for associations between ambient levels of air pollutants and asthma prevalence at a whole community level is unconvincing; meta‐analysis confirms a lack of association. In contrast, a meta‐analysis of cohort studies found an association between asthma incidence and within‐community variations in air pollution (largely traffic dominated). Similarly, a systematic review suggests an association of asthma prevalence with exposure to traffic, although only in those living very close to heavily trafficked roads carrying a lot of trucks. Based on this evidence, the UKs Committee on the Medical Effects of Air Pollutants recently concluded that, overall, the evidence is consistent with the possibility that outdoor air pollution might play a role in causing asthma in susceptible individuals living very close to busy roads carrying a lot of truck traffic. Nonetheless, the effect on public health is unlikely to be large: air pollutants are likely to make only a small contribution, compared with other factors, in the development of asthma, and in only a small proportion of the population.


European Respiratory Journal | 2014

Ambient air pollution: a cause of COPD?

Tamara Schikowski; Inga C. Mills; H. Ross Anderson; Aaron Cohen; Anna Hansell; Francine Kauffmann; Ursula Krämer; Alessandro Marcon; Laura Perez; Jordi Sunyer; Nicole Probst-Hensch; Nino Künzli

The role of ambient air pollution in the development of chronic obstructive pulmonary disease (COPD) is considered to be uncertain. We review the evidence in the light of recent studies. Eight morbidity and six mortality studies were identified. These were heterogeneous in design, characterisation of exposure to air pollution and methods of outcome definition. Six morbidity studies with objectively defined COPD (forced expiratory volume in 1 s/forced vital capacity ratio) were cross-sectional analyses. One longitudinal study defined incidence of COPD as the first hospitalisation due to COPD. However, neither mortality nor hospitalisation studies can unambiguously distinguish acute from long-term effects on the development of the underlying pathophysiological changes. Most studies were based on within-community exposure contrasts, which mainly assess traffic-related air pollution. Overall, evidence of chronic effects of air pollution on the prevalence and incidence of COPD among adults was suggestive but not conclusive, despite plausible biological mechanisms and good evidence that air pollution affects lung development in childhood and triggers exacerbations in COPD patients. To fully integrate this evidence in the assessment, the life-time course of COPD should be better defined. Larger studies with longer follow-up periods, specific definitions of COPD phenotypes, and more refined and source-specific exposure assessments are needed. Evidence of chronic effects of air pollution on the prevalence and incidence of COPD is suggestive but not conclusive http://ow.ly/pCfjy


International Journal of Public Health | 2015

Quantifying the health impacts of ambient air pollutants: recommendations of a WHO/Europe project.

Marie-Eve Héroux; H. Ross Anderson; Richard Atkinson; Bert Brunekreef; Aaron Cohen; Francesco Forastiere; Fintan Hurley; Klea Katsouyanni; Daniel Krewski; Michal Krzyzanowski; Nino Künzli; Inga Mills; Xavier Querol; Bart Ostro; Heather Walton

ObjectiveQuantitative estimates of air pollution health impacts have become an increasingly critical input to policy decisions. The WHO project “Health risks of air pollution in Europe—HRAPIE” was implemented to provide the evidence-based concentration–response functions for quantifying air pollution health impacts to support the 2013 revision of the air quality policy for the European Union (EU).MethodsA group of experts convened by WHO Regional Office for Europe reviewed the accumulated primary research evidence together with some commissioned reviews and recommended concentration–response functions for air pollutant–health outcome pairs for which there was sufficient evidence for a causal association.ResultsThe concentration–response functions link several indicators of mortality and morbidity with short- and long-term exposure to particulate matter, ozone and nitrogen dioxide. The project also provides guidance on the use of these functions and associated baseline health information in the cost–benefit analysis.ConclusionsThe project results provide the scientific basis for formulating policy actions to improve air quality and thereby reduce the burden of disease associated with air pollution in Europe.


Air Quality, Atmosphere & Health | 2013

Acute effects of ambient ozone on mortality in Europe and North America: results from the APHENA study

Roger D. Peng; Evangelia Samoli; Luu Pham; Francesca Dominici; Giota Touloumi; Tim Ramsay; Richard T. Burnett; Daniel Krewski; Alain Le Tertre; Aaron Cohen; Richard Atkinson; H. Ross Anderson; Klea Katsouyanni; Jonathan M. Samet

The “Air Pollution and Health: A Combined European and North American Approach” (APHENA) project is a collaborative analysis of multi-city time-series data on the association between air pollution and adverse health outcomes. The main objective of APHENA was to examine the coherence of findings of time-series studies relating short-term fluctuations in air pollution levels to mortality and morbidity in 125 cities in Europe, the US, and Canada. Multi-city time-series analysis was conducted using a two-stage approach. We used Poisson regression models controlling for overdispersion with either penalized or natural splines to adjust for seasonality. Hierarchical models were used to obtain an overall estimate of excess mortality associated with ozone and to assess potential effect modification. Potential effect modifiers were city-level characteristics related to exposure to other ambient air pollutants, weather, socioeconomic status, and the vulnerability of the population. Regionally pooled risk estimates from Europe and the US were similar; those from Canada were substantially higher. The pooled estimated excess relative risk associated with a 10xa0μg/m3 increase in 1xa0h daily maximum O3 was 0.26xa0% (95xa0% CI, 0.15xa0%, 0.37xa0%). Across regions, there was little consistent indication of effect modification by age or other effect modifiers considered in the analysis. The findings from APHENA on the effects of O3 on mortality in the general population were comparable with previously reported results and relatively robust to the method of data analysis. Overall, there was no indication of strong effect modification by age or ecologic variables considered in the analysis.


Environment International | 2016

Spatial and temporal associations of road traffic noise and air pollution in London: Implications for epidemiological studies

Daniela Fecht; Anna Hansell; David Morley; David Dajnak; Danielle Vienneau; Sean Beevers; Mireille B. Toledano; Frank J. Kelly; H. Ross Anderson; John Gulliver

Road traffic gives rise to noise and air pollution exposures, both of which are associated with adverse health effects especially for cardiovascular disease, but mechanisms may differ. Understanding the variability in correlations between these pollutants is essential to understand better their separate and joint effects on human health. We explored associations between modelled noise and air pollutants using different spatial units and area characteristics in London in 2003-2010. We modelled annual average exposures to road traffic noise (LAeq,24h, Lden, LAeq,16h, Lnight) for ~190,000 postcode centroids in London using the UK Calculation of Road Traffic Noise (CRTN) method. We used a dispersion model (KCLurban) to model nitrogen dioxide, nitrogen oxide, ozone, total and the traffic-only component of particulate matter ≤2.5μm and ≤10μm. We analysed noise and air pollution correlations at the postcode level (~50 people), postcodes stratified by London Boroughs (~240,000 people), neighbourhoods (Lower layer Super Output Areas) (~1600 people), 1km grid squares, air pollution tertiles, 50m, 100m and 200m in distance from major roads and by deprivation tertiles. Across all London postcodes, we observed overall moderate correlations between modelled noise and air pollution that were stable over time (Spearmans rho range: |0.34-0.55|). Correlations, however, varied considerably depending on the spatial unit: largest ranges were seen in neighbourhoods and 1km grid squares (both Spearmans rho range: |0.01-0.87|) and was less for Boroughs (Spearmans rho range: |0.21-0.78|). There was little difference in correlations between exposure tertiles, distance from road or deprivation tertiles. Associations between noise and air pollution at the relevant geographical unit of analysis need to be carefully considered in any epidemiological analysis, in particular in complex urban areas. Low correlations near roads, however, suggest that independent effects of road noise and traffic-related air pollution can be reliably determined within London.


Occupational and Environmental Medicine | 2016

Associations of short-term exposure to traffic-related air pollution with cardiovascular and respiratory hospital admissions in London, UK

Evangelia Samoli; Richard Atkinson; Antonis Analitis; Gary W. Fuller; David Green; Ian Mudway; H. Ross Anderson; Frank J. Kelly

Objectives There is evidence of adverse associations between short-term exposure to traffic-related pollution and health, but little is known about the relative contribution of the various sources and particulate constituents. Methods For each day for 2011–2012 in London, UK over 100 air pollutant metrics were assembled using monitors, modelling and chemical analyses. We selected a priori metrics indicative of traffic sources: general traffic, petrol exhaust, diesel exhaust and non-exhaust (mineral dust, brake and tyre wear). Using Poisson regression models, controlling for time-varying confounders, we derived effect estimates for cardiovascular and respiratory hospital admissions at prespecified lags and evaluated the sensitivity of estimates to multipollutant modelling and effect modification by season. Results For single day exposure, we found consistent associations between adult (15–64u2005years) cardiovascular and paediatric (0–14u2005years) respiratory admissions with elemental and black carbon (EC/BC), ranging from 0.56% to 1.65% increase per IQR change, and to a lesser degree with carbon monoxide (CO) and aluminium (Al). The average of past 7u2005days EC/BC exposure was associated with elderly (65+ years) cardiovascular admissions. Indicated associations were higher during the warm period of the year. Although effect estimates were sensitive to the adjustment for other pollutants they remained consistent in direction, indicating independence of associations from different sources, especially between diesel and petrol engines, as well as mineral dust. Conclusions Our results suggest that exhaust related pollutants are associated with increased numbers of adult cardiovascular and paediatric respiratory hospitalisations. More extensive monitoring in urban centres is required to further elucidate the associations.


PLOS ONE | 2015

Long-Term Exposure to Primary Traffic Pollutants and Lung Function in Children: Cross-Sectional Study and Meta-Analysis

Francesco Barone-Adesi; Jennifer E. Dent; David Dajnak; Sean Beevers; H. Ross Anderson; Frank J. Kelly; Peter H. Whincup

Background There is widespread concern about the possible health effects of traffic-related air pollution. Nitrogen dioxide (NO2) is a convenient marker of primary pollution. We investigated the associations between lung function and current residential exposure to a range of air pollutants (particularly NO2, NO, NOx and particulate matter) in London children. Moreover, we placed the results for NO2 in context with a meta-analysis of published estimates of the association. Methods and Findings Associations between primary traffic pollutants and lung function were investigated in 4884 children aged 9–10 years who participated in the Child Heart and Health Study in England (CHASE). A systematic literature search identified 13 studies eligible for inclusion in a meta-analysis. We combined results from the meta-analysis with the distribution of the values of FEV1 in CHASE to estimate the prevalence of children with abnormal lung function (FEV1<80% of predicted value) expected under different scenarios of NO2 exposure. In CHASE, there were non-significant inverse associations between all pollutants except ozone and both FEV1 and FVC. In the meta-analysis, a 10 μg/m3 increase in NO2 was associated with an 8 ml lower FEV1 (95% CI: -14 to -1 ml; p: 0.016). The observed effect was not modified by a reported asthma diagnosis. On the basis of these results, a 10 μg/m3 increase in NO2 level would translate into a 7% (95% CI: 4% to 12%) increase of the prevalence of children with abnormal lung function. Conclusions Exposure to traffic pollution may cause a small overall reduction in lung function and increase the prevalence of children with clinically relevant declines in lung function.


Air Quality, Atmosphere & Health | 2014

Traffic-related pollution and asthma prevalence in children. Quantification of associations with nitrogen dioxide

Graziella Favarato; H. Ross Anderson; Richard Atkinson; Gary W. Fuller; Inga Mills; Heather Walton

Ambient nitrogen dioxide is a widely available measure of traffic-related air pollution and is inconsistently associated with the prevalence of asthma symptoms in children. The use of this relationship to evaluate the health impact of policies affecting traffic management and traffic emissions is limited by the lack of a concentration-response function based on systematic review and meta-analysis of relevant studies. Using systematic methods, we identified papers containing quantitative estimates for nitrogen dioxide and the 12xa0month period prevalence of asthma symptoms in children in which the exposure contrast was within-community and dominated by traffic pollution. One estimate was selected from each study according to an a priori algorithm. Odds ratios were standardised to 10xa0μg/m3 and summary estimates were obtained using random- and fixed-effects estimates. Eighteen studies were identified. Concentrations of nitrogen dioxide were estimated for the home address (12) and/or school (8) using a range of methods; land use regression (6), study monitors (6), dispersion modelling (4) and interpolation (2). Fourteen studies showed positive associations but only two associations were statistically significant at the 5xa0% level. There was moderate heterogeneity (I2u2009=u200932.8xa0%) and the random-effects estimate for the odds ratio was 1.06 (95xa0% CI 1.00 to 1.11). There was no evidence of small study bias. Individual studies tended to have only weak positive associations between nitrogen dioxide and asthma prevalence but the summary estimate bordered on statistical significance at the 5xa0% level. Although small, the potential impact on asthma prevalence could be considerable because of the high level of baseline prevalence in many cities. Whether the association is causal or indicates the effects of a correlated pollutant or other confounders, the estimate obtained by the meta-analysis would be appropriate for estimating impacts of traffic pollution on asthma prevalence.

Collaboration


Dive into the H. Ross Anderson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klea Katsouyanni

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evangelia Samoli

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Nino Künzli

Swiss Tropical and Public Health Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge