Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Sadri is active.

Publication


Featured researches published by H. Sadri.


Journal of Dairy Science | 2015

The rapid increase of circulating adiponectin in neonatal calves depends on colostrum intake

J. Kesser; M. Hill; J.F.L. Heinz; C. Koch; J. Rehage; J. Steinhoff-Wagner; H.M. Hammon; B. Mielenz; H. Sauerwein; H. Sadri

Adiponectin, an adipokine, regulates metabolism and insulin sensitivity. Considering that the transplacental transfer of maternal proteins of high molecular weight is hindered in ruminants, this study tested the hypothesis that the blood concentration of adiponectin in neonatal calves largely reflects their endogenous synthesis whereby the intake of colostrum might modify the circulating concentrations. We thus characterized the adiponectin concentrations in neonatal and young calves that were fed either colostrum or formula. Three trials were performed: in trial 1, 20 calves were all fed colostrum for 3 d, and then formula until weaning. Blood samples were collected on d 0 (before colostrum feeding), and on d 1, 3, 11, 22, 34, 43, 52, 70, 90, and 108 postnatum. In trial 2, 14 calves were studied for the first 4 d of life. They were fed colostrum (n=7) or formula (n=7), and blood samples were taken right after birth and before each morning feeding on d 2, 3, and 4. In trial 3, calves born preterm (n=7) or at term received colostrum only at 24 h postnatum. Blood was sampled at birth, and before and 2 h after feeding. Additionally, allantoic fluid and blood from 4 Holstein cows undergoing cesarean section were sampled. Adiponectin was quantified by ELISA. In trial 1, the serum adiponectin concentrations recorded on d 3 were 4.7-fold higher than before colostrum intake. The distribution of the molecular weight forms of adiponectin differed before and after colostrum consumption. In trial 2, the colostrum group had consistently greater plasma adiponectin concentrations than the formula group after the first meal. In trial 3, the preterm calves tended to have lower concentrations of plasma adiponectin than the term calves at birth and before and 2 h after feeding. Furthermore, the adiponectin concentrations were substantially lower in allantoic fluid than in the sera from neonatal calves and from cows at parturition. Our results show that calves are born with very low blood concentrations of adiponectin and placental transfer of adiponectin to the bovine fetus is unlikely. In conclusion, colostrum intake is essential for the postnatal increase of circulating adiponectin in newborn calves.


Journal of Dairy Science | 2017

Different milk feeding intensities during the first 4 weeks of rearing dairy calves: Part 2: Effects on the metabolic and endocrine status during calfhood and around the first lactation

J. Kesser; M. Korst; C. Koch; F.-J. Romberg; J. Rehage; Ute Müller; M. Schmicke; Klaus Eder; H.M. Hammon; H. Sadri; H. Sauerwein

Feeding dairy calves at high intensity has been demonstrated to increase milk yield in later life. We investigated the effect of 3 different feeding regimens in the preweaning period on the metabolic and endocrine status during calfhood and in heifers at the onset of the first lactation. In trial 1, 57 German Holstein calves were allocated to 3 different feeding groups: milk replacer restricted to 6.78 kg/calf per day, 11.5% solids (MR-res, n = 20), milk replacer 13.8% solids, ad libitum (MR-ad lib, n = 17), and whole milk ad libitum (WM-ad lib, n = 20). All calves received ad libitum colostrum for 3 d postnatal (p.n.). From d 4 to 27, all calves were fed according to their respective feeding regimen, resulting in average intakes of 6.38, 9.25, and 9.47 kg/d in MR-res, MR-ad lib, and WM-ad lib, respectively. Thereafter, all calves were fed according to the MR-res regimen until weaning at d 55 (gradually until d 69 p.n.). Blood samples were collected on d 0 before colostrum intake and on d 1, 3, 11, 22, 34, 43, 52, 70, 90, and 108 p.n. Liver biopsies were taken on d 19 and 100, and on d 22, 52, and 108 p.n. intravenous glucose tolerance tests were performed. The male calves (n = 8 to 10 per group) underwent also an insulin tolerance test on d 24, 54, and 110 p.n. The females (n = 28) from trial 1 were further reared and bred as common practice, and were enrolled in trial 2 when beginning the last trimester of pregnancy. Blood samples were collected monthly antepartum starting 91 d before calving and weekly (0-70 d) postpartum. Trial 1 was subdivided into 4 phases (P): P0 (d 0-1), P1 (d 2-27), P2 (d 28-69), and P3 (d 70-110 p.n.). In trial 1, the leptin and adiponectin concentrations increased with colostrum intake. Differences in fatty acids, insulin, adiponectin, revised quantitative insulin sensitivity check index (RQUICKI), and variables from the glucose tolerance tests were largely limited to P1. The MR-res group had greater RQUICKI and fatty acid values, and lower insulin and, as a trend, adiponectin concentrations than in 1 or both ad lib groups. These differences were partly sustained in P2 (fatty acids, adiponectin, and RQUICKI) and in P3 (adiponectin). The hepatic mRNA abundance of the gluconeogenic enzymes phosphoenolpyruvate carboxykinase and pyruvatcarboxylase increased from d 19 to 100. None of the blood variables were different between the groups when tested in pregnancy and lactation. Our results do not support a sustained deflection of metabolic regulation by rearing at different feeding intensities; nevertheless, the differences observed during rearing might influence nutrient utilization in later life or the cellular development of organs, such as the mammary gland, and thereby affect milk yield. Further studies involving greater animal numbers and, thus, improved power will help to sort out the mechanisms of programming body function in later life via nutrition in early life.


International Journal for Vitamin and Nutrition Research | 2016

Supplementation of Diabetic Rats with Leucine, Zinc, and Chromium: Effects on Function and Histological Structure of Testes

Saeed Kolahian; H. Sadri; Amir Larijani; Gholamreza Hamidian; Afshin Davasaz

The objective was to study whether leucine, zinc, and chromium supplementations influence function and histological structure of testes in a rat model of type 2 diabetes. Seventy seven adult male rats were categorized into 11 groups of 7 animals each: (1) nondiabetic (negative control); (2) non-treated (positive control); (3) treated with insulin; (4) treated with glibenclamide; (5) treated with leucine; (6) treated with zinc; (7) treated with chromium; (8) treated with leucine + zinc; (9) treated with leucine + chromium; (10) treated with zinc + chromium; (11) treated with leucine + zinc + chromium. In the non-treated group, hyperglycemia severely damaged testes morphology as well as the spermatogenic process. Diabetes induction decreased testicular length, height, width, volume, total number of epididymal sperm, and number of live sperm. Seminiferous tubules of diabetic rats showed a decrease in diameter of tubules and height of epithelium. Diabetes induction decreased the number of cells (spermatogonia, spermatocyte, spermatid, and Sertoli) in cross sections of seminiferous tubules. Administration of nutritional supplements to the diabetic rats improved testes morphology and reversed, although not completely, impairment of spermatogenesis. Treatment with nutritional supplements increased testicular length, height, width, and volume. All treatments increased the number of live sperm and the total number of epididymal sperm. Furthermore, nutritional supplements increased diameter of tubules, height of epithelium, and the number of cells in seminiferous tubules. These alleviating effects were more pronounced in animals treated with the leucine-zinc-chromium combination. The present results demonstrate beneficial effects of zinc, leucine, and chromium supplements to improve testes morphology and to restore spermatogenesis in type 2 diabetic rats.


PLOS ONE | 2015

The Effects of Leucine, Zinc, and Chromium Supplements on Inflammatory Events of the Respiratory System in Type 2 Diabetic Rats

Saeed Kolahian; H. Sadri; Amir Ali Shahbazfar; Morvarid Amani; Anis Mazadeh; Mehdi Mirani

Diabetes mellitus is a major cause of serious micro- and macrovascular diseases that affect nearly every system in the body, including the respiratory system. Non-enzymatic protein glycation due to hyperglycaemic stress has fundamental implications due to the large capillary network and amount of connective tissue in the lung. The current study was designed to determine whether leucine, zinc, and chromium supplementations influence the function and histological structure of the respiratory tract in a rat model of type 2 diabetes. Seventy-seven rats were divided into eleven groups, consisting of 7 animals each. One group served as negative control and insulin and glibenclamide were used as positive control drugs. Thus, eight groups received the nutritional supplements alone or in combination with each other. Nutritional supplements and glibenclamide were added to the drinking water and neutral protamine Hagedorn insulin was subcutaneously injected during the 4 weeks of treatment period. The induction of type 2 diabetes in the rats caused an infiltration of mononuclear cells and edema in the submucosa of the trachea and lung, severe fibrosis around the vessels and airways, and perivascular and peribronchial infiltration of inflammatory cells and fibrin. In the diabetic group, the total inflammation score and Reid index significantly increased. Diabetes induction significantly reduced the total antioxidant status and elevated the lipid peroxidation products in the serum, lung lavage and lung tissue of the diabetic animals. Treatment with nutritional supplements significantly decreased the histopathological changes and inflammatory indices in the diabetic animals. Supplementation of diabetic rats with leucine, zinc, and chromium, alone and in combination, significantly increased the total antioxidant status and lipid peroxidation level in the diabetic animals. The nutritional supplements improved the enzymatic antioxidant activity of catalase, glutathione peroxidase, myeloperoxidase, and superoxide dismutase in the diabetic rats. The present results demonstrate beneficial effects and amelioration of inflammation in the respiratory system of type 2 diabetic rats by leucine, zinc, and chromium supplements, probably due to their hypoglycaemic and antioxidant properties. Using safe and effective nutritional supplements, such as leucine, chromium and zinc, to replace proven conventional medical treatments may help to control diabetes and/or its complications.


Italian Journal of Animal Science | 2015

The Effects of Partial Replacement of Soybean Meal by Xylose-Treated Soybean Meal in the Starter Concentrate on Performance, Health Status, and Blood Metabolites of Holstein Calves

Mehdi Kazemi-Bonchenari; Ali Alizadeh; Ali Reza Tahriri; Keyvan Karkoodi; Sam Jalali; H. Sadri

The objective was to study the effects of partial replacement of soybean meal (SBM) with xylose-treated SBM (XSBM) as a source of rumen undegradable protein (RUP) in the starter concentrate of calves on performance, health status and selected blood metabolites. Twenty-one female Holstein dairy calves (body weight=39.6±2.3 kg) were randomly assigned to 3 groups (n=7 each): i) starter concentrate with 25% SBM [control (CTR)]; ii) starter concentrate with 17.5% SBM +7.5% XSBM (7.5XSBM); and iii) starter concentrate with 12.5% SBM+12.5% XSBM (12.5XSBM). Calves received 2 L of milk twice daily, with ad libitum access to starter concentrates from d 4 until weaning (d 56). Performance and health status were recorded throughout the experiment. Blood samples collected on d 4, 35 and 56 were assayed for concentrations of glucose, total protein (TP), and plasma urea nitrogen (PUN). Starter intake (560, 400, and 420 g/d for CTR, 7.5XSBM, and 12.5XSBM, respectively), average daily gain (0.67, 0.6 and 0.57 kg/d), and feed to gain ratio (0.83, 0.67, and 0.74) were affected by treatments (P<0.05). Hearth girth, height at withers, body length, rectal temperature, faecal score, and respiratory score did not differ among treatments. Mean plasma glucose and TP were not affected by treatments, whereas PUN in the 12.5XSBM group was lower than in the other groups (P<0.05). In conclusion, the present results showed that partial replacement of SBM by XSBM may improve efficiency of dietary protein utilisation in pre-weaned calves, which warrants further studies.


Journal of Dairy Science | 2018

Acylcarnitine profiles in serum and muscle of dairy cows receiving conjugated linoleic acids or a control fat supplement during early lactation

Y. Yang; H. Sadri; C. Prehn; J. Adamski; J. Rehage; Sven Dänicke; B. Saremi; H. Sauerwein

Acylcarnitines (ACC) are formed when fatty acid (FA)-coenzyme A enters the mitochondria for β-oxidation and the tricarboxylic acid cycle through the carnitine shuttle. Concentrations of ACC may vary depending on the metabolic conditions, but can accumulate when rates of β-oxidation exceed those of tricarboxylic acid. This study aimed to characterize muscle and blood serum acylcarnitine profiles, to determine the mRNA abundance of muscle carnitine acyltransferases, and to test whether dietary supplementation (from d 1 in milk) with conjugated linoleic acids (CLA; 100 g/d; each 12% of trans-10,cis-12 and cis-9,trans-11 CLA; n = 11) altered these compared with control fat-supplemented cows (CTR; n = 10). Blood samples and biopsies from the semitendinosus musclewere collected on d -21, 1, 21, and 70 relative to parturition. Serum and muscle ACC profiles were quantified using a targeted metabolomics approach. The CLA supplement did not affect the variables examined. The serum concentration of free carnitine decreased with the onset of lactation. The concentrations of acetylcarnitine, hydroxybutyrylcarnitine, and the sum of short-chain ACC in serum were greater from d -21 to 21 than thereafter. The serum concentrations of long-chain ACC tetradecenoylcarnitine (C14:1) and octadecenoylcarnitine (C18:1) concentrations were greater on d 1 and 21 compared with d -21. Muscle carnitine remained unchanged, whereas short- and medium-chain ACC, including propenoylcarnitine (C3:1), hydroxybutyrylcarnitine, hydroxyhexanoylcarnitine, hexenoylcarnitine (C6:1), and pimelylcarnitine were increased on d 21 compared with d -21 and decreased thereafter. In muscle, the concentrations of long-chain ACC (from C14 to C18) were elevated on d 1. The mRNA abundance of carnitine palmitoyltransferase 1, muscle isoform (CPT1B) increased 2.8-fold from d -21 to 1, followed by a decline to nearly prepartum values by d 70, whereas that of CPT2 did not change over time. The majority of serum and muscle short- and long-chain ACC were positively correlated with the FA concentrations in serum, whereas serum carnitine and C5 were negatively correlated with FA. Time-related changes in the serum and muscle ACC profiles were demonstrated that were not affected by the CLA supplement at the dosage used in the present study. The elevated concentrations of long-chain ACC species in muscle and of serum acetylcarnitine around parturition point to incomplete FA oxidation were likely due to insufficient metabolic adaptation in response to the load of FA around parturition.


Domestic Animal Endocrinology | 2018

Lactation-related changes in tissue expression of PEDF in dairy cows

H. Sadri; B. Saremi; Sven Dänicke; J. Rehage; M. Mielenz; A. Hosseini; H. Sauerwein

Pigment epithelium-derived factor (PEDF) is evolving as metabolic regulatory protein. Albeit mostly considered in only pathological conditions related to excess energy intake resulting in obesity and insulin resistance, PEDF is likely to be involved in other physiological processes such as the homeorhetic adaptation of metabolism to lactation. We aimed to characterize the expression of PEDF and its association to the concomitant mobilization of body reserves during lactation in nonobese subjects. This mobilization is particularly distinct in dairy cows, and we therefore assessed the mRNA expression of PEDF and its putative receptors in different tissues in 2 trials with dairy cows fed with or without conjugated linoleic acids (CLAs). Conjugated linoleic acids depress milk fat synthesis and may thus reduce the drain of energy via milk. In pluriparous cows, the serum PEDF concentrations and the mRNA abundance in subcutaneous adipose tissue (scAT), as well as the hepatic and scAT mRNA abundance of the putative receptors, adipose triglyceride lipase, and laminin receptor 1, changed over time of sampling (day -21 until day 252 relative to calving). Conjugated linoleic acid treatment was associated with reduced PEDF concentrations in serum and lower PEDF mRNA abundance in scAT on day 21 postpartum. Comparing different tissues from primiparous cows, PEDF mRNA was highest in the liver, followed by scAT, visceral adipose tissue (AT), and mammary gland, and lowest in the muscle. Significant changes in PEDF expression with time of sampling were limited to AT in primiparous and pluriparous cows. Our data support a regulatory role for PEDF. The similarities between the time course of the serum concentrations of PEDF and its mRNA abundance in scAT may point to a regulatory role for AT rather than the liver for PEDF in dairy cows.


Journal of Dairy Science | 2017

Mammalian target of rapamycin signaling and ubiquitin proteasome–related gene expression in 3 different skeletal muscles of colostrum- versus formula-fed calves

H. Sadri; J. Steinhoff-Wagner; H.M. Hammon; Rupert Bruckmaier; S. Görs; H. Sauerwein

The rates of protein turnover are higher during the neonatal period than at any other time in postnatal life. The mammalian target of rapamycin (mTOR) and the ubiquitin-proteasome system are key pathways regulating cellular protein turnover. The objectives of this study were (1) to elucidate the effect of feeding colostrum versus milk-based formula on the mRNA abundance of key components of the mTOR pathway and of the ubiquitin-proteasome system in skeletal muscle of neonatal calves and (2) to compare different muscles. German Holstein calves were fed either colostrum (COL; n = 7) or milk-based formula (FOR; n = 7) up to 4 d of life. The nutrient content in formula and colostrum was similar, but formula had lower concentrations of free branched-chain AA (BCAA) and free total AA, insulin, and insulin-like growth factor (IGF)-I than colostrum. Blood samples were taken from d 1 to 4 before morning feeding and before and 2 h after the last feeding on d 4. Muscle samples from M. longissimus dorsi (MLD), M. semitendinosus (MST), and M. masseter (MM) were collected after slaughter on d 4 at 2 h after feeding. The preprandial concentrations of free total AA and BCAA, insulin, and IGF-I in plasma changed over time but did not differ between groups. Plasma free total AA and BCAA concentrations decreased in COL, whereas they increased in FOR after feeding, resulting in higher postprandial plasma total AA and BCAA concentrations in FOR than in COL. Plasma insulin concentrations increased after feeding in both groups but were higher in COL than in FOR. Plasma IGF-I concentrations decreased in COL, whereas they remained unchanged in FOR after feeding. The mRNA abundance of mTOR and ribosomal protein S6 kinase 1 (S6K1) in 3 different skeletal muscles was greater in COL than in FOR, whereas that of eukaryotic translation initiation factor 4E binding protein 1 (4EBP1) was unaffected by diet. The mRNA abundance of ubiquitin activating enzyme (UBA1) and ubiquitin conjugating enzyme 1 (UBE2G1) enzymes was not affected by diet, whereas that of ubiquitin conjugating enzyme 2 (UBE2G2) was greater (MLD) or tended to be greater (MM) in COL than in FOR. The mRNA abundance of atrogin-1 in MLD and MST was lower in COL than in FOR, whereas that of muscle ring finger protein-1 (MuRF1) was greater (MST) or tended to be greater (MLD). The abundance of MuRF1 mRNA was highest in MST, followed by MLD, and was lowest in MM. The results indicate that colostrum feeding may stimulate protein turnover that may result in a high rate of protein deposition in a muscle type-specific manner. Such effects seem to be mediated by the postprandial increase in plasma insulin.


Metabolomics | 2017

Cinnamon: does it hold its promises in cows? Using non-targeted blood serum metabolomics profiling to test the effects of feeding cinnamon to dairy cows undergoing lactation-induced insulin resistance

H. Sadri; AliReza Alizadeh; Hani Vakili; Ali Ghorbani; Rupert Bruckmaier; Anna Artati; Jerzy Adamski; H. Sauerwein


Journal of Dairy Science | 2017

Corrigendum to “Different milk feeding intensities during the first 4 weeks of rearing dairy calves: Part 2: Effects on the metabolic and endocrine status during calfhood and around the first lactation” (J. Dairy Sci. 100:3109–3125)

J. Kesser; M. Korst; C. Koch; F.-J. Romberg; J. Rehage; Ute Müller; M. Schmicke; Klaus Eder; H.M. Hammon; H. Sadri; H. Sauerwein

Collaboration


Dive into the H. Sadri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sven Dänicke

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge