Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Sio is active.

Publication


Featured researches published by H. Sio.


Review of Scientific Instruments | 2012

Charged-particle spectroscopy for diagnosing shock ρR and strength in NIF implosions

A. B. Zylstra; J. A. Frenje; F. H. Séguin; M. Rosenberg; H. G. Rinderknecht; M. Gatu Johnson; D. T. Casey; N. Sinenian; M. J.-E. Manuel; C. Waugh; H. Sio; C. K. Li; R. D. Petrasso; S. Friedrich; K. M. Knittel; R. Bionta; M. McKernan; D. A. Callahan; G. W. Collins; E. Dewald; T. Döppner; M. J. Edwards; S. H. Glenzer; Damien G. Hicks; O. L. Landen; Richard A. London; A. J. Mackinnon; N. B. Meezan; Rajendra Prasad; J. E. Ralph

The compact Wedge Range Filter (WRF) proton spectrometer was developed for OMEGA and transferred to the National Ignition Facility (NIF) as a National Ignition Campaign diagnostic. The WRF measures the spectrum of protons from D-(3)He reactions in tuning-campaign implosions containing D and (3)He gas; in this work we report on the first proton spectroscopy measurement on the NIF using WRFs. The energy downshift of the 14.7-MeV proton is directly related to the total ρR through the plasma stopping power. Additionally, the shock proton yield is measured, which is a metric of the final merged shock strength.


Physics of Plasmas | 2016

The near vacuum hohlraum campaign at the NIF: A new approach

S. Le Pape; L. Berzak Hopkins; L. Divol; N. B. Meezan; D. Turnbull; A. J. Mackinnon; D. Ho; J. S. Ross; S. F. Khan; A. Pak; E. Dewald; L.R. Benedetti; S. R. Nagel; J. Biener; D. A. Callahan; C. B. Yeamans; P. Michel; M. B. Schneider; B. J. Kozioziemski; T. Ma; A. G. MacPhee; S. W. Haan; N. Izumi; R. Hatarik; P. A. Sterne; Peter M. Celliers; J. E. Ralph; Ryan Rygg; D. J. Strozzi; J. D. Kilkenny

The near vacuum campaign on the National Ignition Facility has concentrated its efforts over the last year on finding the optimum target geometry to drive a symmetric implosion at high convergence ratio (30×). As the hohlraum walls are not tamped with gas, the hohlraum is filling with gold plasma and the challenge resides in depositing enough energy in the hohlraum before it fills up. Hohlraum filling is believed to cause symmetry swings late in the pulse that are detrimental to the symmetry of the hot spot at high convergence. This paper describes a series of experiments carried out to examine the effect of increasing the distance between the hohlraum wall and the capsule (case to capsule ratio) on the symmetry of the hot spot. These experiments have shown that smaller Case to Capsule Ratio (CCR of 2.87 and 3.1) resulted in oblate implosions that could not be tuned round. Larger CCR (3.4) led to a prolate implosion at convergence 30× implying that inner beam propagation at large CCR is not impeded by the expanding hohlraum plasma. A Case to Capsule ratio of 3.4 is a promising geometry to design a round implosion but in a smaller hohlraum where the hohlraum losses are lower, enabling a wider cone fraction range to adjust symmetry.


Review of Scientific Instruments | 2012

Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science.

F. H. Séguin; N. Sinenian; M. Rosenberg; A. Zylstra; M. J.-E. Manuel; H. Sio; C. Waugh; H. G. Rinderknecht; M. Gatu Johnson; J. A. Frenje; C. K. Li; R. D. Petrasso; T. C. Sangster; S. Roberts

Compact wedge-range-filter proton spectrometers cover proton energies ∼3-20 MeV. They have been used at the OMEGA laser facility for more than a decade for measuring spectra of primary D(3)He protons in D(3)He implosions, secondary D(3)He protons in DD implosions, and ablator protons in DT implosions; they are now being used also at the National Ignition Facility. The spectra are used to determine proton yields, shell areal density at shock-bang time and compression-bang time, fuel areal density, and implosion symmetry. There have been changes in fabrication and in analysis algorithms, resulting in a wider energy range, better accuracy and precision, and better robustness for survivability with indirect-drive inertial-confinement-fusion experiments.


Physics of Plasmas | 2016

First beryllium capsule implosions on the National Ignition Facility

J. L. Kline; S. A. Yi; Andrei N. Simakov; R. E. Olson; D. C. Wilson; G. A. Kyrala; T. S. Perry; S. H. Batha; A. Zylstra; E. L. Dewald; R. Tommasini; J. E. Ralph; D. J. Strozzi; A. G. MacPhee; D. A. Callahan; D. E. Hinkel; O. A. Hurricane; J. L. Milovich; J. R. Rygg; S. F. Khan; S. W. Haan; Peter M. Celliers; D. S. Clark; B. A. Hammel; B. J. Kozioziemski; M. B. Schneider; M. M. Marinak; H. G. Rinderknecht; H. F. Robey; J. D. Salmonson

The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosion shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.


Physics of Plasmas | 2016

Symmetry control in subscale near-vacuum hohlraums

D. Turnbull; L. Berzak Hopkins; S. Le Pape; L. Divol; N. B. Meezan; O. L. Landen; D. Ho; A. J. Mackinnon; Alex Zylstra; H. G. Rinderknecht; H. Sio; R. D. Petrasso; J. S. Ross; S. F. Khan; A. Pak; E. L. Dewald; D. A. Callahan; O. A. Hurricane; W. W. Hsing; M. J. Edwards

Controlling the symmetry of indirect-drive inertial confinement fusion implosions remains a key challenge. Increasing the ratio of the hohlraum diameter to the capsule diameter (case-to-capsule ratio, or CCR) facilitates symmetry tuning. By varying the balance of energy between the inner and outer cones as well as the incident laser pulse length, we demonstrate the ability to tune from oblate, through round, to prolate at a CCR of 3.2 in near-vacuum hohlraums at the National Ignition Facility, developing empirical playbooks along the way for cone fraction sensitivity of various laser pulse epochs. Radiation-hydrodynamic simulations with enhanced inner beam propagation reproduce most experimental observables, including hot spot shape, for a majority of implosions. Specular reflections are used to diagnose the limits of inner beam propagation as a function of pulse length.


Physics of Plasmas | 2014

Species separation and kinetic effects in collisional plasma shocksa)

C. Bellei; H. G. Rinderknecht; A. Zylstra; M. Rosenberg; H. Sio; C. K. Li; R. D. Petrasso; S. C. Wilks; Peter A. Amendt

The properties of collisional shock waves propagating in uniform plasmas are studied with ion-kinetic calculations, in both slab and spherical geometry and for the case of one and two ion species. Despite the presence of an electric field at the shock front—and in contrast to the case where an interface is initially present [C. Bellei et al., Phys. Plasmas 20, 044702 (2013)]—essentially no ion reflection at the shock front is observed due to collisions, with a probability of reflection ≲10−4 for the cases presented. A kinetic two-ion-species spherical convergent shock is studied in detail and compared against an average-species calculation, confirming effects of species separation and differential heating of the ion species at the shock front. The effect of different ion temperatures on the DT and D3He fusion reactivity is discussed in the fluid limit and is estimated to be moderately important.


Physics of Plasmas | 2014

Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF

Michael Rosenberg; Alex Zylstra; F. H. Séguin; H. G. Rinderknecht; Johan A. Frenje; M. Gatu Johnson; H. Sio; C. Waugh; N. Sinenian; C. K. Li; R. D. Petrasso; P.W. McKenty; M. Hohenberger; P. B. Radha; J. A. Delettrez; V. Yu. Glebov; R. Betti; V.N. Goncharov; J. P. Knauer; T. C. Sangster; S. LePape; A. J. Mackinnon; J. Pino; J. M. McNaney; J. R. Rygg; Peter A. Amendt; C. Bellei; L. R. Benedetti; L. Berzak Hopkins; R. Bionta

Measurements of yield, ion temperature, areal density (ρR), shell convergence, and bang time have been obtained in shock-driven, D2 and D3He gas-filled “exploding-pusher” inertial confinement fusion (ICF) implosions at the National Ignition Facility to assess the impact of ion kinetic effects. These measurements probed the shock convergence phase of ICF implosions, a critical stage in hot-spot ignition experiments. The data complement previous studies of kinetic effects in shock-driven implosions. Ion temperature and fuel ρR inferred from fusion-product spectroscopy are used to estimate the ion-ion mean free path in the gas. A trend of decreasing yields relative to the predictions of 2D draco hydrodynamics simulations with increasing Knudsen number (the ratio of ion-ion mean free path to minimum shell radius) suggests that ion kinetic effects are increasingly impacting the hot fuel region, in general agreement with previous results. The long mean free path conditions giving rise to ion kinetic effects in ...


Physics of Plasmas | 2016

Direct drive: Simulations and results from the National Ignition Facility

P. B. Radha; M. Hohenberger; D. H. Edgell; J.A. Marozas; F. J. Marshall; D.T. Michel; M. J. Rosenberg; W. Seka; A. Shvydky; T. R. Boehly; T.J.B. Collins; E. M. Campbell; R. S. Craxton; J. A. Delettrez; S. Dixit; J. A. Frenje; D. H. Froula; V.N. Goncharov; S. X. Hu; J. P. Knauer; R. L. McCrory; P.W. McKenty; D. D. Meyerhofer; J. D. Moody; J. F. Myatt; R. D. Petrasso; S. P. Regan; T. C. Sangster; H. Sio; S. Skupsky

Direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolvedscattered light and scattered-lightspectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivity analyses indicate that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.


Review of Scientific Instruments | 2015

Note: A monoenergetic proton backlighter for the National Ignition Facility

J. R. Rygg; Alex Zylstra; F. H. Séguin; S. LePape; B. Bachmann; R. S. Craxton; E. M. Garcia; Y. Z. Kong; M. Gatu-Johnson; S. F. Khan; B. Lahmann; P.W. McKenty; R. D. Petrasso; H. G. Rinderknecht; M. Rosenberg; D. B. Sayre; H. Sio

A monoenergetic, isotropic proton source suitable for proton radiography applications has been demonstrated at the National Ignition Facility (NIF). A deuterium and helium-3 gas-filled glass capsule was imploded with 39 kJ of laser energy from 24 of NIFs 192 beams. Spectral, spatial, and temporal measurements of the 15-MeV proton product of the (3)He(d,p)(4)He nuclear reaction reveal a bright (10(10) protons/sphere), monoenergetic (ΔE/E = 4%) spectrum with a compact size (80 μm) and isotropic emission (∼13% proton fluence variation and <0.4% mean energy variation). Simultaneous measurements of products produced by the D(d,p)T and D(d,n)(3)He reactions also show 2 × 10(10) isotropically distributed 3-MeV protons.


Review of Scientific Instruments | 2012

Upgrade of the MIT Linear Electrostatic Ion Accelerator (LEIA) for nuclear diagnostics development for Omega, Z and the NIF

N. Sinenian; M. J.-E. Manuel; A. Zylstra; M. Rosenberg; C. Waugh; H. G. Rinderknecht; D. T. Casey; H. Sio; J. K. Ruszczynski; Liyuan Zhou; M. Gatu Johnson; J. A. Frenje; F. H. Séguin; C. K. Li; R. D. Petrasso; C. L. Ruiz; R. J. Leeper

The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D(3)He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10(7) s(-1) and 10(6) s(-1) for DD and D(3)He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile, made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility.

Collaboration


Dive into the H. Sio's collaboration.

Top Co-Authors

Avatar

R. D. Petrasso

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

H. G. Rinderknecht

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. A. Frenje

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

C. K. Li

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. Gatu Johnson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

F. H. Séguin

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Zylstra

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. Rosenberg

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. T. Casey

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge