Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Takenaga is active.

Publication


Featured researches published by H. Takenaga.


Nuclear Fusion | 2003

Achievement of high fusion triple product, steady-state sustainment and real-time NTM stabilization in high-βp ELMy H-mode discharges in JT-60U

A. Isayama; Y. Kamada; N. Hayashi; T. Suzuki; T. Oikawa; T. Fujita; Takeshi Fukuda; S. Ide; H. Takenaga; K. Ushigusa; T. Ozeki; Y. Ikeda; N. Umeda; H. Yamada; M. Isobe; Y. Narushima; K. Ikeda; S. Sakakibara; K. Yamazaki; K. Nagasaki

This paper reports results on the progress in steady-state high-βp ELMy H-mode discharges in JT-60U. A fusion triple product, nD(0)τETi(0), of 3.1 × 1020 m−3 s keV under full non-inductive current drive has been achieved at Ip = 1.8 MA, which extends the record value of the fusion triple product under full non-inductive current drive by 50%. A high-beta plasma with βN ~ 2.7 has been sustained for 7.4 s (~60τE), with the duration determined only by the facility limits, such as the capability of the poloidal field coils and the upper limit on the duration of injection of neutral beams. Destabilization of neoclassical tearing modes (NTMs) has been avoided with good reproducibility by tailoring the current and pressure profiles. On the other hand, a real-time NTM stabilization system has been developed where detection of the centre of the magnetic island and optimization of the injection angle of the electron cyclotron wave are done in real time. By applying this system, a 3/2 NTM has been completely stabilized in a high-beta region (βp ~ 1.2, βN ~ 1.5), and the beta value and confinement enhancement factor have been improved by the stabilization.


Nuclear Fusion | 2005

Energy loss for grassy ELMs and effects of plasma rotation on the ELM characteristics in JT-60U

N. Oyama; Y. Sakamoto; A. Isayama; M. Takechi; P. Gohil; L. L. Lao; Philip B. Snyder; T. Fujita; S. Ide; Y. Kamada; Y. Miura; T. Oikawa; T. Suzuki; H. Takenaga; K. Toi

The energy loss for grassy edge localized modes (ELMs) has been studied to investigate the applicability of the grassy ELM regime to ITER. The grassy ELM regime is characterized by high frequency periodic collapses of 800–1500 Hz, which is ~15 times faster than that for type I ELMs. The divertor peak heat flux due to grassy ELMs is less than 10% of that for type I ELMs. This smaller heat flux is caused by a narrower radial extent of the collapse of the temperature pedestal. The different radial extent between type I ELMs and grassy ELMs agrees qualitatively with the different radial distribution of the eigenfunctions as determined from ideal MHD stability analysis. The dominant ELM energy loss for grassy ELMs appears to be caused by temperature reduction, and its ratio to the pedestal stored energy was 0.4–1%. This ratio is lower by a factor of about 10 than that for type I ELMs, which typically have between 2–10% fractional loss of the pedestal energy. A systematic study of the effects of counter (CTR) plasma rotation on the ELM characteristics has been performed using a combination of tangential and perpendicular neutral beam injections (NBIs) in JT-60U. In the high plasma triangularity (δ) regime, ELM characteristics (e.g. amplitude, frequency and type) can be changed from type I ELMs to high frequency grassy ELMs as the CTR plasma rotation is increased. On the other hand, in the low δ regime, complete ELM suppression (QH-mode) can be sustained for long periods up to 3.4 s (~18τE or energy confinement times), when the plasma position in terms of the clearance between the first wall and the plasma separatrix is optimized during the application of CTR-NBIs. In JT-60U, a transient QH phase was also observed during the CO-NBI phase with almost no net toroidal rotation at the plasma edge.


Nuclear Fusion | 2007

Extended steady-state and high-beta regimes of net-current free heliotron plasmas in the Large Helical Device

O. Motojima; H. Yamada; A. Komori; N. Ohyabu; T. Mutoh; O. Kaneko; K. Kawahata; T. Mito; K. Ida; S. Imagawa; Y. Nagayama; T. Shimozuma; K.Y. Watanabe; S. Masuzaki; J. Miyazawa; T. Morisaki; S. Morita; S. Ohdachi; N. Ohno; K. Saito; S. Sakakibara; Y. Takeiri; N. Tamura; K. Toi; M. Tokitani; M. Yokoyama; M. Yoshinuma; K. Ikeda; A. Isayama; K. Ishii

The performance of net-current free heliotron plasmas has been developed by findings of innovative operational scenarios in conjunction with an upgrade of the heating power and the pumping/fuelling capability in the Large Helical Device (LHD). Consequently, the operational regime has been extended, in particular, with regard to high density, long pulse length and high beta. Diversified studies in LHD have elucidated the advantages of net-current free heliotron plasmas. In particular, an internal diffusion barrier (IDB) by a combination of efficient pumping of the local island divertor function and core fuelling by pellet injection has realized a super dense core as high as 5 × 10 20 m -3 , which stimulates an attractive super dense core reactor. Achievements of a volume averaged beta of 4.5% and a discharge duration of 54 min with a total input energy of 1.6 GJ (490 kW on average) are also highlighted. The progress of LHD experiments in these two years is overviewed by highlighting IDB, high β and long pulse.


Nuclear Fusion | 2002

Measurement of the chemical sputtering yields of CH4/CD4 and C2Hx/C2Dx at the carbon divertor plates of JT-60U

T. Nakano; H. Kubo; S. Higashijima; N. Asakura; H. Takenaga; T. Sugie; K. Itami

The chemical sputtering yields of CH4/CD4 and C2Hx/C2Dx have been measured at the divertor plates of JT-60U. Spectroscopic measurements for CH/CD and C2 spectral bands are applied to estimate the CH4/CD4 and the C2Hx/C2Dx flux. At the surface temperatures of 380, 440 and 560 K, the CH4 yield is, respectively, ~0.8%, 1-2% and 2-3%, the C2Hx yield 1-2%, 3-4% and 4-5%, and the total sputtering yield by hydrogen ions 3-4%, ~8% and ~10%. With increasing ion flux to the divertor plates (Γion), the sputtering yields (Y) decrease, i.e. Y∝Γion(-0.05 to -0.40). With increasing electron temperature (Te), the sputtering yields increase, i.e. Y∝Te0.5. It is concluded from the result of regression analysis of Y∝Te0.5 that the negative dependence of the yields on the ion flux is attributed to the incident ion energies to the carbon plates. The ratio of the sputtering yields by deuterium ions and hydrogen ions is estimated to be ≥1.5 based on the ion flux measurement by Hα/Dα intensity. The C2Hx/C2Dx sputtering yield accounts for ~80% of the total number of sputtered carbon atoms.


Nuclear Fusion | 2007

Momentum transport and plasma rotation profile in toroidal direction in JT-60U L-mode plasmas

M. Yoshida; Y. Koide; H. Takenaga; H. Urano; N. Oyama; K. Kamiya; Yoshiteru Sakamoto; G. Matsunaga; Y. Kamada

The characteristics of momentum transport and plasma rotation in the toroidal direction are studied, using near-perpendicular neutral beam injection (PERP-NBI), co tangential and counter (CTR) tangential NBI in JT-60U. Diffusive and non-diffusive terms of momentum transport are evaluated from the transient analysis by using the momentum source modulation. Fast ion losses due to the toroidal field ripple, which locally induces the edge CTR rotation, are used as a novel momentum source. Parameter dependence of these transport coefficients i.e. the toroidal momentum diffusivity (?) and the convection velocity (Vconv), and the relation between momentum and heat diffusivities (?i) are investigated in L-mode plasmas systematically. The toroidal momentum diffusivity increases with increasing heating power and decreases with increasing plasma current. The relation of ? and ?i to some non-dimensional parameters is investigated. A clear dependence of ?/?i on normalized plasma pressure (?N) is observed. It is also found that toroidal rotation velocity profiles in the case with and without external torque input can be almost reproduced by ? and Vconv estimated from the transient momentum transport analysis at low ? (?N < 0.4).


Nuclear Fusion | 2006

Comparison of transient electron heat transport in LHD helical and JT-60U tokamak plasmas

Shigeru Inagaki; H. Takenaga; K. Ida; A. Isayama; N. Tamura; T. Shimozuma; Y. Kamada; S. Kubo; Y. Miura; Y. Nagayama; K. Kawahata; S. Sudo; K. Ohkubo

Transient transport experiments are performed in plasmas with and without internal transport barriers (ITB) on LHD and JT-60U. The dependence of χe on the electron temperature, Te, and on the electron temperature gradient, ∇Te, is analysed with an empirical non-linear heat transport model. In plasmas without an ITB, two different types of non-linearity of the electron heat transport are observed from cold/heat pulse propagation: the χe depends on Te and ∇Te in JT-60U, while the ∇Te dependence is weak in LHD. Inside the ITB region, there is none or weak ∇Te dependence both in LHD and JT-60U. Growth of the cold pulse driven by the negative Te dependence of χe is observed inside the ITB region (LHD) and near the boundary of the ITB region (JT-60U).


Journal of Nuclear Materials | 1999

Role of divertor geometry on detachment and core plasma performance in JT60U

N. Asakura; N. Hosogane; K. Itami; A. Sakasai; S. Sakurai; K. Shimizu; M. Shimada; H. Kubo; S. Higashijma; H. Takenaga; H. Tamai; S. Konoshima; T. Sugie; K. Masaki; Y. Koide; O. Naito; H. Shirai; T. Ishijima; S. Suzuki; A. Kumagai

Experimental results related to the divertor geometry such as divertor plasma detachment, neutral transport and plasma energy confinement, were compared in the open and W-shaped divertors. The ion flux near the outer strike point was larger than in the open divertor, and the electron temperature at the target, T e div , was reduced. Divertor detachment and x-point MARFEs occurred at n e 10-20% lower than that for the open divertor. Although the leakage of neutrals from the divertor to the main chamber decreased, a neutral source in the main chamber due to an interaction of the outer scrape-off layer (SOL) plasma to the baffle plates became dominant above the baffle. Degradation in the enhancement factor of the energy confinement was observed similarly in the open and W-shaped divertors. The neutral density inside the separatrix was estimated to be a factor of 2-3 smaller, which did not affect the energy confinement.


Nuclear Fusion | 2005

Overview of confinement and MHD stability in the Large Helical Device

O. Motojima; K. Ida; K.Y. Watanabe; Y. Nagayama; A. Komori; T. Morisaki; B.J. Peterson; Y. Takeiri; K. Ohkubo; K. Tanaka; T. Shimozuma; S. Inagaki; T. Kobuchi; S. Sakakibara; J. Miyazawa; H. Yamada; N. Ohyabu; K. Narihara; K. Nishimura; M. Yoshinuma; S. Morita; T. Akiyama; N. Ashikawa; C. D. Beidler; M. Emoto; T. Fujita; Takeshi Fukuda; H. Funaba; P. Goncharov; M. Goto

The Large Helical Device is a heliotron device with L = 2 and M = 10 continuous helical coils with a major radius of 3.5–4.1 m, a minor radius of 0.6 m and a toroidal field of 0.5–3 T, which is a candidate among toroidal magnetic confinement systems for a steady state thermonuclear fusion reactor. There has been significant progress in extending the plasma operational regime in various plasma parameters by neutral beam injection with a power of 13 MW and electron cyclotron heating (ECH) with a power of 2 MW. The electron and ion temperatures have reached up to 10 keV in the collisionless regime, and the maximum electron density, the volume averaged beta value and stored energy are 2.4 × 1020 m−3, 4.1% and 1.3 MJ, respectively. In the last two years, intensive studies of the magnetohydrodynamics stability providing access to the high beta regime and of healing of the magnetic island in comparison with the neoclassical tearing mode in tokamaks have been conducted. Local island divertor experiments have also been performed to control the edge plasma aimed at confinement improvement. As for transport study, transient transport analysis was executed for a plasma with an internal transport barrier and a magnetic island. The high ion temperature plasma was obtained by adding impurities to the plasma to keep the power deposition to the ions reasonably high even at a very low density. By injecting 72 kW of ECH power, the plasma was sustained for 756 s without serious problems of impurities or recycling.


Plasma Physics and Controlled Fusion | 1998

The spectral profile of the line emitted from the divertor region of JT-60U

H. Kubo; H. Takenaga; T. Sugie; S. Higashijima; S Suzuki; A. Sakasai; N. Hosogane

In order to understand the recycling and emission processes of deuterium atoms, spectral profiles of the line emitted from the divertor region of JT-60U have been observed with a high-resolution spectrometer and analysed by simulation with a three-dimensional neutral particle transport code. The profile has been explained as composed of narrow and broad components; the narrow component is attributed to dissociative excitation and electron collisional excitation of the atoms produced by dissociation, and the broad component is attributed to electron collisional excitation of the atoms produced by reflection and charge exchange. In low-density plasmas, the simulated line profile agrees reasonably well with that observed, although the component attributed to the atoms reflected at the divertor tiles is overestimated by a factor of about two. Dissociative excitation from deuterium molecules and molecular ions plays an important role for the line intensity. The ratio of the line intensity to the deuterium atom flux for high-energy deuterium atoms, which are produced by the reflection and charge exchange, is reduced, because the fast atoms readily escape from the divertor plasma. The width of the narrow component in a low-density case corresponds to a temperature of deuterium atoms of 1.3 eV, and that in a high-density case corresponds to a temperature of 2.2 eV.


Nuclear Fusion | 2003

Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

H. Takenaga; S. Higashijima; N. Oyama; Leonid G. Bruskin; Y. Koide; S. Ide; H. Shirai; Y. Sakamoto; T. Suzuki; K. W. Hill; G. Rewoldt; G.J. Kramer; R. Nazikian; T. Fujita; A. Sakasai; Y. Kamada; H. Kubo

The relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated in reversed shear (RS) and high βp mode plasmas of JT-60U. The electron effective diffusivity is well correlated with the ion thermal diffusivity in the ITB region. The ratio of particle flux to electron heat flux, calculated on the basis of the linear stability analysis, shows a similar tendency to an experiment in the RS plasma with a strong ITB. However, the calculated ratio of ion anomalous heat flux to electron heat flux is smaller than the experiment in the ITB region. Helium and carbon are not accumulated inside the ITB even with ion heat transport close to a neoclassical level, but argon is accumulated. The helium diffusivity (DHe) and the ion thermal diffusivity (χi) are 5–15 times higher than the neoclassical level in the high βp mode plasma. In the RS plasma, DHe is reduced from 6–7 times to a 1.4–2 times higher level than the neoclassical level when χi is reduced from 7–18 times to a 1.2–2.6 times higher level than the neoclassical level. The carbon and argon diffusivities estimated assuming the neoclassical inward convection velocity are 4–5 times larger than the neoclassical value, even when χi is close to the neoclassical level. Argon exhaust from the inside of the ITB is demonstrated by applying electron cyclotron heating (ECH) in the high βp mode plasma, where both electron and argon density profiles become flatter. The flattening of the argon density profile is consistent with the reduction of the neoclassical inward convection velocity due to the reduction of the bulk plasma density gradient. In the RS plasma, the density gradient is not decreased by ECH and argon is not exhausted. These results suggest the importance of density gradient control in suppressing impurity accumulation.

Collaboration


Dive into the H. Takenaga's collaboration.

Top Co-Authors

Avatar

Y. Kamada

Japan Atomic Energy Research Institute

View shared research outputs
Top Co-Authors

Avatar

N. Asakura

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Oyama

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

T. Fujita

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

S. Ide

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

A. Isayama

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

K. Shimizu

Japan Atomic Energy Research Institute

View shared research outputs
Top Co-Authors

Avatar

S. Higashijima

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

Y. Miura

Japan Atomic Energy Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge