Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. Oyama is active.

Publication


Featured researches published by N. Oyama.


Nuclear Fusion | 2013

ELM control strategies and tools: status and potential for ITER

P. T. Lang; A. Loarte; G. Saibene; L. R. Baylor; M. Becoulet; M. Cavinato; S. Clement-Lorenzo; E. Daly; T.E. Evans; M.E. Fenstermacher; Y. Gribov; L. D. Horton; C. Lowry; Y. Martin; O. Neubauer; N. Oyama; Michael J. Schaffer; D. Stork; W. Suttrop; P. Thomas; M. Q. Tran; H. R. Wilson; A. Kavin; O. Schmitz

Operating ITER in the reference inductive scenario at the design values of Ip = 15 MA and QDT = 10 requires the achievement of good H-mode confinement that relies on the presence of an edge transport barrier whose pedestal pressure height is key to plasma performance. Strong gradients occur at the edge in such conditions that can drive magnetohydrodynamic instabilities resulting in edge localized modes (ELMs), which produce a rapid energy loss from the pedestal region to the plasma facing components (PFC). Without appropriate control, the heat loads on PFCs during ELMs in ITER are expected to become significant for operation in H-mode at Ip = 6–9 MA; operation at higher plasma currents would result in a very reduced life time of the PFCs. Currently, several options are being considered for the achievement of the required level of ELM control in ITER; this includes operation in plasma regimes which naturally have no or very small ELMs, decreasing the ELM energy loss by increasing their frequency by a factor of up to 30 and avoidance of ELMs by actively controlling the edge with magnetic perturbations. Small/no ELM regimes obtained by influencing the edge stability (by plasma shaping, rotational shear control, etc) have shown in present experiments a significant reduction of the ELM heat fluxes compared to type-I ELMs. However, so far they have only been observed under a limited range of pedestal conditions depending on each specific device and their extrapolation to ITER remains uncertain. ELM control by increasing their frequency relies on the controlled triggering of the edge instability leading to the ELM. This has been presently demonstrated with the injection of pellets and with plasma vertical movements; pellets having provided the results more promising for application in ITER conditions. ELM avoidance/suppression takes advantage of the fact that relatively small changes in the pedestal plasma and magnetic field parameters seem to have a large stabilizing effect on large ELMs. Application of edge magnetic field perturbation with non-axisymmetric fields is found to affect transport at the plasma edge and thus prevent the uncontrolled rise of the plasma pressure gradients and the occurrence of type-I ELMs. This paper compiles a brief overview of various ELM control approaches, summarizes their present achievements and briefly discusses the open issues regarding their application in ITER.


Plasma Physics and Controlled Fusion | 2003

Edge localized mode physics and operational aspects in tokamaks

M. Becoulet; G. Huysmans; Y. Sarazin; X. Garbet; Ph. Ghendrih; F. Rimini; E. Joffrin; X. Litaudon; P. Monier-Garbet; J-M Ané; P.R. Thomas; A. Grosman; V. Parail; H. R. Wilson; P. Lomas; P. deVries; K.-D. Zastrow; Guy Matthews; J. Lönnroth; S. Gerasimov; S. E. Sharapov; M. Gryaznevich; G F Counsell; A. Kirk; M. Valovic; R.J. Buttery; A. Loarte; G. Saibene; R. Sartori; A.W. Leonard

Recent progress in experimental and theoretical studies of edge localized mode (ELM) physics is reviewed for the reactor relevant plasma regimes, namely the high confinement regimes, that is, H-modes and advanced scenarios.Theoretical approaches to ELM physics, from a linear ideal magnetohydrodynamic (MHD) stability analysis to non-linear transport models with ELMs are discussed with respect to experimental observations, in particular the fast collapse of pedestal pressure profiles, magnetic measurements and scrape-off layer transport during ELMs.High confinement regimes with different types of ELMs are addressed in this paper in the context of development of operational scenarios for ITER. The key parameters that have been identified at present to reduce the energy losses in Type I ELMs are operation at high density, high edge magnetic shear and high triangularity. However, according to the present experimental scaling for the energy losses in Type I ELMs, the extrapolation of such regimes for ITER leads to unacceptably large heat loads on the divertor target plates exceeding the material limits. High confinement H-mode scenarios at high triangularity and high density with small ELMs (Type II), mixed regimes (Type II and Type I) and combined advanced regimes at high βp are discussed for present-day tokamaks. The optimum combination of high confinement and small MHD activity at the edge in Type II ELM scenarios is of interest to ITER. However, to date, these regimes have been achieved in a rather narrow operational window and far from ITER parameters in terms of collisionality, edge safety factor and βp.The compatibility of the alternative internal transport barrier (ITB) scenario with edge pedestal formation and ELMs is also addressed. Edge physics issues related to the possible combination of small benign ELMs (Type III, Type II ELMs, quiescent double barrier) and high performance ITBs are discussed for present-day experiments (JET, JT-60U, DIII-D) in terms of their relevance for ITER. Successful plasma edge control, at high triangularity (~0.5) and high density (~0.7nGR), in ITB scenarios in JET is reported.Active control of ELMs by edge current, pellet injection, impurities and external magnetic perturbations creating an ergodic zone localized at the separatrix are discussed for present-day experiments and from the perspective of future reactors.


Nuclear Fusion | 2009

Investigations of impurity seeding and radiation control for long-pulse and high-density H-mode plasmas in JT-60U

N. Asakura; T. Nakano; N. Oyama; T. Sakamoto; G. Matsunaga; Kiyoshi Itami

Rseduction of heat loading appropriate for the plasma facing components such as the divertor is crucial for a fusion reactor. Power handling by large radiative power loss has been studied in long pulse ELMy H-mode discharges on JT-60U (τd = 30–35 s). Case 1 is argon (Ar) seeding into standard ELMy H-mode plasmas, where large radiation loss in the confined region of the main plasma caused a change in ELM characteristics from Type-I to Type-III. Case 2 is a combination of Ar and nitrogen (Ne) gas seeding into Type-I ELMy H-mode plasmas with an internal transport barrier (ITB). For case 1, large radiation loss both from the main plasma and from the divertor was produced, and operation of Type-III ELMs was preferable to a reduction in ELM energy loss fraction (WELM/Wdia) to 0.15%. Both transient and steady-state heat loadings were reduced. Relatively good energy confinement (HH98y2 = 0.87 − 0.75) with large frad (Prad/Pabs > 0.8) and divertor plasma detachment was sustained continuously for 13.5 s. For case 2, with reduced Ar seeding to the main plasma and increased divertor radiation with Ne seeding, the ELMy H-mode plasma with an ITB had better energy confinement (HH98y2 = 0.95 − 0.8), which was sustained continuously for 12 s. The radiated power was increased primarily in the divertor ( ), which was produced both by seeded Ne ions and by carbon influx due to transient (ELM) and steady-state heat loadings in the attached divertor. Reduction in the heat loading was not enough, thus enhancement of the radiated power in the divertor will be necessary for the formation of the divertor detachment.


Nuclear Fusion | 2009

Neoclassical tearing mode control using electron cyclotron current drive and magnetic island evolution in JT-60U

A. Isayama; G. Matsunaga; T. Kobayashi; Shinichi Moriyama; N. Oyama; Yoshiteru Sakamoto; T. Suzuki; H. Urano; N. Hayashi; Y. Kamada; T. Ozeki; Y. Hirano; L. Urso; H. Zohm; M. Maraschek; J. Hobirk; K. Nagasaki; Jt Team

The results of stabilizing neoclassical tearing modes (NTMs) with electron cyclotron current drive (ECCD) in JT-60U are described with emphasis on the effectiveness of the stabilization. The range of the minimum EC wave power needed for complete stabilization of an m/n = 2/1 NTM was experimentally identified for two regimes using unmodulated ECCD to clarify the NTM behaviours with different plasma parameters: 0.2 < jEC/jBS < 0.4 for Wsat/dEC ~ 3 and Wsat/Wmarg ~ 2, and 0.35 < jEC/jBS < 0.46 for Wsat/dEC ~ 1.5 and Wsat/Wmarg ~ 2. Here, m and n are the poloidal and toroidal mode numbers; jEC and jBS the EC-driven current density and bootstrap current density at the mode rational surface; Wsat, Wmarg and dEC the full island width at saturation, marginal island width and full-width at half maximum of the ECCD deposition profile, respectively. Stabilization of a 2/1 NTM using modulated ECCD synchronized with a mode rotation of about 5 kHz was performed, in which it was found that the stabilization effect degrades when the phase of the modulation deviates from that of the ECCD at the island O-point. The decay time of the magnetic perturbation amplitude due to the ECCD increases by 50% with a phase shift of ±50° from the O-point ECCD, thus revealing the importance of the phasing of modulated ECCD. For near X-point ECCD, the NTM amplitude increases, revealing a destabilization effect. It was also found that modulated ECCD at the island O-point has a stronger stabilization effect than unmodulated ECCD by a factor of more than 2.


Nuclear Fusion | 2001

Alfvén eigenmodes driven by Alfvénic beam ions in JT-60U

K. Shinohara; Y. Kusama; M. Takechi; A. Morioka; M. Ishikawa; N. Oyama; K. Tobita; T. Ozeki; S. Takeji; S. Moriyama; T. Fujita; T. Oikawa; T. Suzuki; T. Nishitani; T. Kondoh; S. Lee; M. Kuriyama; Jt Team; G.J. Kramer; N.N. Gorelenkov; R. Nazikian; C. Z. Cheng; G. Y. Fu; A. Fukuyama

Instabilities with frequency chirping in the frequency range of Alfven eigenmodes have been found in the domain 0.1% < βh < 1% and vb||/vA ~1 with high energy neutral beam injection in JT-60U. One instability with a frequency inside the Alfven continuum spectrum appears and its frequency increases slowly to the toroidicity induced Alfven eigenmode (TAE) gap on the timescale of an equilibrium change ( ≈ 200 ms). Other instabilities appear with a frequency inside the TAE gap and their frequencies change very quickly by 10-20 kHz in 1-5 ms. During the period when these fast frequency sweeping (fast FS) modes occur, abrupt large amplitude events (ALEs) often appear with a drop of neutron emission rate and an increase in fast neutral particle fluxes. The loss of energetic ions increases with a peak fluctuation amplitude of θ/Bθ. An energy dependence of the loss ions is observed and suggests a resonant interaction between energetic ions and the mode.


Nuclear Fusion | 2005

Energy loss for grassy ELMs and effects of plasma rotation on the ELM characteristics in JT-60U

N. Oyama; Y. Sakamoto; A. Isayama; M. Takechi; P. Gohil; L. L. Lao; Philip B. Snyder; T. Fujita; S. Ide; Y. Kamada; Y. Miura; T. Oikawa; T. Suzuki; H. Takenaga; K. Toi

The energy loss for grassy edge localized modes (ELMs) has been studied to investigate the applicability of the grassy ELM regime to ITER. The grassy ELM regime is characterized by high frequency periodic collapses of 800–1500 Hz, which is ~15 times faster than that for type I ELMs. The divertor peak heat flux due to grassy ELMs is less than 10% of that for type I ELMs. This smaller heat flux is caused by a narrower radial extent of the collapse of the temperature pedestal. The different radial extent between type I ELMs and grassy ELMs agrees qualitatively with the different radial distribution of the eigenfunctions as determined from ideal MHD stability analysis. The dominant ELM energy loss for grassy ELMs appears to be caused by temperature reduction, and its ratio to the pedestal stored energy was 0.4–1%. This ratio is lower by a factor of about 10 than that for type I ELMs, which typically have between 2–10% fractional loss of the pedestal energy. A systematic study of the effects of counter (CTR) plasma rotation on the ELM characteristics has been performed using a combination of tangential and perpendicular neutral beam injections (NBIs) in JT-60U. In the high plasma triangularity (δ) regime, ELM characteristics (e.g. amplitude, frequency and type) can be changed from type I ELMs to high frequency grassy ELMs as the CTR plasma rotation is increased. On the other hand, in the low δ regime, complete ELM suppression (QH-mode) can be sustained for long periods up to 3.4 s (~18τE or energy confinement times), when the plasma position in terms of the clearance between the first wall and the plasma separatrix is optimized during the application of CTR-NBIs. In JT-60U, a transient QH phase was also observed during the CO-NBI phase with almost no net toroidal rotation at the plasma edge.


Nuclear Fusion | 2009

Experimental studies of ITER demonstration discharges

A. C. C. Sips; T. A. Casper; E. J. Doyle; G. Giruzzi; Y. Gribov; J. Hobirk; G. M. D. Hogeweij; L. D. Horton; A. Hubbard; Ian H. Hutchinson; S. Ide; A. Isayama; F. Imbeaux; G.L. Jackson; Y. Kamada; Charles Kessel; F. Köchl; P. Lomas; X. Litaudon; T.C. Luce; E. Marmar; Massimiliano Mattei; I. Nunes; N. Oyama; V. Parail; A. Portone; G. Saibene; R. Sartori; J. Stober; T. Suzuki

Key parts of the ITER scenarios are determined by the capability of the proposed poloidal field (PF) coil set. They include the plasma breakdown at low loop voltage, the current rise phase, the performance during the flat top (FT) phase and a ramp down of the plasma. The ITER discharge evolution has been verified in dedicated experiments. New data are obtained from C-Mod, ASDEX Upgrade, DIII-D, JT-60U and JET. Results show that breakdown for Eaxis < 0.23–0.33 V m−1 is possible unassisted (ohmic) for large devices like JET and attainable in devices with a capability of using ECRH assist. For the current ramp up, good control of the plasma inductance is obtained using a full bore plasma shape with early X-point formation. This allows optimization of the flux usage from the PF set. Additional heating keeps li(3) < 0.85 during the ramp up to q95 = 3. A rise phase with an H-mode transition is capable of achieving li(3) < 0.7 at the start of the FT. Operation of the H-mode reference scenario at q95 ~ 3 and the hybrid scenario at q95 = 4–4.5 during the FT phase is documented, providing data for the li (3) evolution after the H-mode transition and the li (3) evolution after a back-transition to L-mode. During the ITER ramp down it is important to remain diverted and to reduce the elongation. The inductance could be kept ≤1.2 during the first half of the current decay, using a slow Ip ramp down, but still consuming flux from the transformer. Alternatively, the discharges can be kept in H-mode during most of the ramp down, requiring significant amounts of additional heating.


Nuclear Fusion | 2007

Momentum transport and plasma rotation profile in toroidal direction in JT-60U L-mode plasmas

M. Yoshida; Y. Koide; H. Takenaga; H. Urano; N. Oyama; K. Kamiya; Yoshiteru Sakamoto; G. Matsunaga; Y. Kamada

The characteristics of momentum transport and plasma rotation in the toroidal direction are studied, using near-perpendicular neutral beam injection (PERP-NBI), co tangential and counter (CTR) tangential NBI in JT-60U. Diffusive and non-diffusive terms of momentum transport are evaluated from the transient analysis by using the momentum source modulation. Fast ion losses due to the toroidal field ripple, which locally induces the edge CTR rotation, are used as a novel momentum source. Parameter dependence of these transport coefficients i.e. the toroidal momentum diffusivity (?) and the convection velocity (Vconv), and the relation between momentum and heat diffusivities (?i) are investigated in L-mode plasmas systematically. The toroidal momentum diffusivity increases with increasing heating power and decreases with increasing plasma current. The relation of ? and ?i to some non-dimensional parameters is investigated. A clear dependence of ?/?i on normalized plasma pressure (?N) is observed. It is also found that toroidal rotation velocity profiles in the case with and without external torque input can be almost reproduced by ? and Vconv estimated from the transient momentum transport analysis at low ? (?N < 0.4).


Nuclear Fusion | 2008

Effect of toroidal field ripple on plasma rotation in JET

P. de Vries; A. Salmi; V. Parail; C. Giroud; Y. Andrew; Tm Biewer; Kristel Crombé; I. Jenkins; Thomas Johnson; V. Kiptily; A. Loarte; J. Lönnroth; A. Meigs; N. Oyama; R. Sartori; G. Saibene; H. Urano; K.-D. Zastrow

Dedicated experiments on TF ripple effects on the performance of tokamak plasmas have been carried out at JET. The TF ripple was found to have a profound effect on the plasma rotation. The central Mach number, M, defined as the ratio of the rotation velocity and the thermal velocity, was found to drop as a function of TF ripple amplitude (3) from an average value of M = 0.40-0.55 for operations at the standard JET ripple of 6 = 0.08% to M = 0.25-0.40 for 6 = 0.5% and M = 0.1-0.3 for delta = 1%. TF ripple effects should be considered when estimating the plasma rotation in ITER. With standard co-current injection of neutral beam injection (NBI), plasmas were found to rotate in the co-current direction. However, for higher TF ripple amplitudes (delta similar to 1%) an area of counter rotation developed at the edge of the plasma, while the core kept its co-rotation. The edge counter rotation was found to depend, besides on the TF ripple amplitude, on the edge temperature. The observed reduction of toroidal plasma rotation with increasing TF ripple could partly be explained by TF ripple induced losses of energetic ions, injected by NBI. However, the calculated torque due to these losses was insufficient to explain the observed counter rotation and its scaling with edge parameters. It is suggested that additional TF ripple induced losses of thermal ions contribute to this effect.


Plasma Physics and Controlled Fusion | 2006

Pedestal conditions for small ELM regimes in tokamaks

N. Oyama; P Gohil; L. D. Horton; A. Hubbard; J.W. Hughes; Y. Kamada; K Kamiya; A.W. Leonard; A Loarte; R. Maingi; G. Saibene; R Sartori; J. Stober; W. Suttrop; H. Urano; W P West

Several small/no ELM regimes such as EDA, grassy ELM, HRS, QH-mode, type II and V ELMs with good confinement properties have been obtained in Alcator C-Mod, ASDEX-Upgrade, DIII-D, JET, JFT-2M, JT-60U and NSTX. All these regimes show considerable reduction of instantaneous ELM heat load onto divertor target plates in contrast to conventional type I ELM, and ELM energy losses are evaluated as less than 5% of the pedestal stored energy. These small/no ELM regimes are summarized and widely categorized by their pedestal conditions in terms of the operational space in non-dimensional pedestal parameters and requirement of plasma shape/configuration. The characteristics of edge fluctuations and activities of ideal MHD stability leading to small/no ELMs are also summarized.

Collaboration


Dive into the N. Oyama's collaboration.

Top Co-Authors

Avatar

Y. Kamada

Japan Atomic Energy Research Institute

View shared research outputs
Top Co-Authors

Avatar

H. Urano

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

H. Takenaga

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

A. Isayama

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

K. Shinohara

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

N. Asakura

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Ide

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

T. Fujita

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

G. Matsunaga

Japan Atomic Energy Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge