Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. W. Müller is active.

Publication


Featured researches published by H. W. Müller.


Physical Review E | 2002

Molecular dynamics study on the equilibrium magnetization properties and structure of ferrofluids

Zuowei Wang; Christian Holm; H. W. Müller

We investigate in detail the initial susceptibility, magnetization curves, and microstructure of ferrofluids in various concentration and particle dipole moment ranges by means of molecular dynamics simulations. We use the Ewald summation for the long-range dipolar interactions, take explicitly into account the translational and rotational degrees of freedom, coupled to a Langevin thermostat. When the dipolar interaction energy is comparable with the thermal energy, the simulation results on the magnetization properties agree with the theoretical predictions very well. For stronger dipolar couplings, however, we find systematic deviations from the theoretical curves. We analyze in detail the observed microstructure of the fluids under different conditions. The formation of clusters is found to enhance the magnetization at weak fields and thus leads to a larger initial susceptibility. The influence of the particle aggregation is isolated by studying ferro-solids, which consist of magnetic dipoles frozen in at random locations but which are free to rotate. Due to the artificial suppression of clusters in ferrosolids the observed susceptibility is considerably lowered when compared to ferrofluids.


Plasma Physics and Controlled Fusion | 2013

Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO

A. Kallenbach; M. Bernert; R. Dux; L. Casali; T. Eich; L. Giannone; A. Herrmann; R. M. McDermott; A. Mlynek; H. W. Müller; F. Reimold; J. Schweinzer; M. Sertoli; G. Tardini; W. Treutterer; E. Viezzer; R. Wenninger; M. Wischmeier

A future fusion reactor is expected to have all-metal plasma facing materials (PFMs) to ensure low erosion rates, low tritium retention and stability against high neutron fluences. As a consequence, intrinsic radiation losses in the plasma edge and divertor are low in comparison to devices with carbon PFMs. To avoid localized overheating in the divertor, intrinsic low-Z and medium-Z impurities have to be inserted into the plasma to convert a major part of the power flux into radiation and to facilitate partial divertor detachment. For burning plasma conditions in ITER, which operates not far above the L–H threshold power, a high divertor radiation level will be mandatory to avoid thermal overload of divertor components. Moreover, in a prototype reactor, DEMO, a high main plasma radiation level will be required in addition for dissipation of the much higher alpha heating power. For divertor plasma conditions in present day tokamaks and in ITER, nitrogen appears most suitable regarding its radiative characteristics. If elevated main chamber radiation is desired as well, argon is the best candidate for the simultaneous enhancement of core and divertor radiation, provided sufficient divertor compression can be obtained. The parameter Psep/R, the power flux through the separatrix normalized by the major radius, is suggested as a suitable scaling (for a given electron density) for the extrapolation of present day divertor conditions to larger devices. The scaling for main chamber radiation from small to large devices has a higher, more favourable dependence of about Prad,main/R2. Krypton provides the smallest fuel dilution for DEMO conditions, but has a more centrally peaked radiation profile compared to argon. For investigation of the different effects of main chamber and divertor radiation and for optimization of their distribution, a double radiative feedback system has been implemented in ASDEX Upgrade (AUG). About half the ITER/DEMO values of Psep/R have been achieved so far, and close to DEMO values of Prad,main/R2, albeit at lower Psep/R. Further increase of this parameter may be achieved by increasing the neutral pressure or improving the divertor geometry.


Nuclear Fusion | 2002

High β plasmoid formation, drift and striations during pellet ablation in ASDEX Upgrade

H. W. Müller; R. Dux; M. Kaufmann; P. T. Lang; A. Lorenz; M. Maraschek; V. Mertens; J. Neuhauser

The ablated material of a frozen hydrogen isotope pellet which is injected into a hot tokamak plasma forms a high β plasmoid. This diamagnetic plasmoid is accelerated to the magnetic low field side of the torus. The high β plasmoid drift was directly observed by an optical diagnostic with high space and time resolution. Spectroscopic measurements of the emitted light allowed the density and temperature of the ablation cloud, and for the first time also of the drifting plasmoids, to be determined. The experiments give a new insight into the dynamics of the formation of striations during the pellet ablation; these striations cause the separation of the ablated material into a sequence of separated, drifting plasmoids. The influence of the drift on the mass deposition profile for high field side pellet injection is discussed. The plasmoid dynamics even influences the radial pellet motion, most probably owing to a rocket effect. The physical principles of the high β plasmoid drift are discussed and compared with the experimental observations.


Nuclear Fusion | 2010

Assessment of compatibility of ICRF antenna operation with full W wall in ASDEX Upgrade

Vl. V. Bobkov; F. Braun; R. Dux; A. Herrmann; L. Giannone; A. Kallenbach; A. Krivska; H. W. Müller; R. Neu; Jean-Marie Noterdaeme; T. Pütterich; V. Rohde; J. Schweinzer; A. C. C. Sips; I. Zammuto

The compatibility of ICRF (ion cyclotron range of frequencies) antenna operation with high-Z plasma facing components is assessed in ASDEX Upgrade (AUG) with its tungsten (W) first wall.The mechanism of ICRF-related W sputtering was studied by various diagnostics including the local spectroscopic measurements of W sputtering yield YW on antenna limiters. Modification of one antenna with triangular shields, which cover the locations where long magnetic field lines pass only one out of two (0π)-phased antenna straps, did not influence the locally measured YW values markedly. In the experiments with antennas powered individually, poloidal profiles of YW on limiters of powered antennas show high YW close to the equatorial plane and at the very edge of the antenna top. The YW-profile on an unpowered antenna limiter peaks at the location projecting to the top of the powered antenna.An interpretation of the YW measurements is presented, assuming a direct link between the W sputtering and the sheath driving RF voltages deduced from parallel electric near-field (E||) calculations and this suggests a strong E|| at the antenna limiters. However, uncertainties are too large to describe the YW poloidal profiles.In order to reduce ICRF-related rise in W concentration CW, an operational approach and an approach based on calculations of parallel electric fields with new antenna designs are considered. In the operation, a noticeable reduction in YW and CW in the plasma during ICRF operation with W wall can be achieved by (a) increasing plasma–antenna clearance; (b) strong gas puffing; (c) decreasing the intrinsic light impurity content (mainly oxygen and carbon in AUG). In calculations, which take into account a realistic antenna geometry, the high E|| fields at the antenna limiters are reduced in several ways: (a) by extending the antenna box and the surrounding structures parallel to the magnetic field; (b) by increasing the average strap–box distance, e.g. by increasing the number of toroidally distributed straps; (c) by a better balance of (0π)-phased contributions to RF image currents.


Nuclear Fusion | 2009

Non-boronized compared with boronized operation of ASDEX Upgrade with full-tungsten plasma facing components

A. Kallenbach; R. Dux; M. Mayer; R. Neu; T. Pütterich; V. Bobkov; J. C. Fuchs; T. Eich; L. Giannone; O. Gruber; A. Herrmann; L. D. Horton; C. F. Maggi; H. Meister; H. W. Müller; V. Rohde; A. C. C. Sips; A. Stäbler; J. Stober

After completion of the tungsten coating of all plasma facing components, ASDEX Upgrade has been operated without boronization for 1 1/2 experimental campaigns. This has allowed the study of fuel retention under conditions of relatively low D co-deposition with low-Z impurities as well as the operational space of a full-tungsten device for the unfavourable condition of a relatively high intrinsic impurity level. Restrictions in operation were caused by the central accumulation of tungsten in combination with density peaking, resulting in H?L backtransitions induced by too low separatrix power flux. Most important control parameters have been found to be the central heating power, as delivered predominantly by ECRH, and the ELM frequency, most easily controlled by gas puffing. Generally, ELMs exhibit a positive impact, with the effect of impurity flushing out of the pedestal region overbalancing the ELM-induced W source. The restrictions of plasma operation in the unboronized W machine occurred predominantly under low or medium power conditions. Under medium-high power conditions, stable operation with virtually no difference between boronized and unboronized discharges was achieved. Due to the reduced intrinsic radiation with boronization and the limited power handling capability of VPS coated divertor tiles (?10?MW?m?2), boronized operation at high heating powers was possible only with radiative cooling. To enable this, a previously developed feedback system using (thermo-)electric current measurements as approximate sensor for the divertor power flux was introduced into the standard AUG operation. To avoid the problems with reduced ELM frequency due to core plasma radiation, nitrogen was selected as radiating species since its radiative characteristic peaks at lower electron temperatures in comparison with Ne and Ar, favouring SOL and divertor radiative losses. Nitrogen seeding resulted not only in the desired divertor power load reduction but also in improved energy confinement, as well as in smaller ELMs.


Physical Review Letters | 2003

Ferrofluids as thermal ratchets

Andreas Engel; H. W. Müller; Peter Reimann; Achim Jung

Colloidal suspensions of ferromagnetic nanoparticles, so-called ferrofluids, are shown to be suitable systems to demonstrate and investigate thermal ratchet behavior: By rectifying thermal fluctuations, angular momentum is transferred to a resting ferrofluid from an oscillating magnetic field without net rotating component. Via viscous coupling the noise driven rotation of the microscopic ferromagnetic grains is transmitted to the carrier liquid to yield a macroscopic torque. For a simple setup we analyze the rotation of the ferrofluid theoretically and show that the results are compatible with the outcome of a simple demonstration experiment.


Plasma Physics and Controlled Fusion | 2006

SOLPS modelling of ASDEX upgrade H-mode plasma

A. V. Chankin; D. Coster; R. Dux; C. Fuchs; G. Haas; A. Herrmann; L. D. Horton; A. Kallenbach; M. Kaufmann; C. Konz; K. Lackner; C. F. Maggi; H. W. Müller; J. Neuhauser; R. Pugno; M. Reich; Wolfgang Schneider

A low density H-mode plasma has been selected for detailed inter-ELM modelling by the SOLPS code package, with the coupled treatment of its plasma (fluid code B2) and neutral (Monte-Carlo code Eirene) parts. Good quality measured midplane density and temperature profiles, covering the pedestal region and stretching far into the SOL, as well as several other parameters and profiles measured in the divertor, have enabled testing the consistency of code solutions with experiment. Once the upstream, midplane profiles have been fitted, and the global parameters (e.g. input power into the computational grid, radiated power) matched, the code reproduces experimental profiles and control parameters in the divertor with an accuracy within a factor of 2. Deviations of modelled parameters from the experiment were found around the strike point position where most of the power was deposited on the target. The deviations are consistent among themselves and all point to one common problem with the modelling: the predicted divertor electron temperature is too low and the density too high, compared with the experiment. The largest inconsistency between the code and experiment was in the magnitude of the peak Hα radiation in the outer divertor, which was larger by a factor of 2 in the code simulations. In addition, the code predicts a somewhat higher sub-divertor neutral flux but lower carbon impurity content in the edge plasma than in the experiment, as well as lower CIII emission. The discrepancy between Hα profiles can to a large degree be attributed to profile effects: the simulated Hα emission profiles are narrower than in the experiment, reflecting the tendency of the neutral–plasma mix to congregate excessively around the strike point in the modelling. At the same time, the integrated Hα emission matches very well with the experiment.Extensive sensitivity studies of the influence of variations in input parameters and assumptions of the code on the modelled divertor conditions have been conducted. They have not resulted in an identification of any SOLPS input/control parameters capable of removing the main disagreement between the code output and experiment. A possibility of parallel transport effects related to low collisionality to increase the effective plasma temperature near the strike point position or of increased perpendicular transport by neutrals (due to some missing reactions in Eirene) to widen the target profiles, will be explored in the future.


Nuclear Fusion | 2010

Deuterium inventory in the full-tungsten divertor of ASDEX Upgrade

K. Sugiyama; M. Mayer; V. Rohde; M. Balden; T. Dürbeck; A. Herrmann; S. Lindig; A. Wiltner; H. W. Müller; R. Neu

The deuterium inventory in tungsten-coated divertor tiles used during the first full-tungsten plasma-facing wall phase of ASDEX Upgrade was measured by various methods of analysis. The D inventory in the inner divertor was still dominated by codeposition with residual carbon, whereas it was dominated by trapping in the thicker vacuum plasma sprayed tungsten layers at the outer divertor. The total inventory in the divertor area decreased by a factor of 5–10 compared with the period of carbon-dominated plasma-facing wall.


Nuclear Fusion | 2014

An experimental investigation of the high density transition of the scrape-off layer transport in ASDEX Upgrade

D. Carralero; G. Birkenmeier; H. W. Müller; P. Manz; P. de Marné; S. H. Müller; F. Reimold; U. Stroth; M. Wischmeier; E. Wolfrum

A multidiagnostic approach, utilizing Langmuir probes in the midplane, X-point and divertor walls, along with lithium beam and infrared measurements is employed to evaluate the evolution of the scrape-off layer (SOL) of ASDEX Upgrade across the L-mode density transition leading to the formation of a density shoulder. The flattening of the SOL density profiles is linked to a regime change of filaments, which become faster and larger, and to a similar flattening of the q∥ profile. This transition is related to the beginning of outer divertor detachment and leads to the onset of a velocity shear layer in the SOL. Experimental measurements are in good agreement with several filament models which describe the process as a transition from conduction to convection-dominated SOL perpendicular transport caused by an increase of parallel collisionality. These results could be of great relevance since both ITER and DEMO will feature detached divertors and densities largely over the transition values, and might therefore exhibit convective transport levels different to those observed typically in present-day devices.


Plasma Physics and Controlled Fusion | 2010

Generation of blobs and holes in the edge of the ASDEX Upgrade tokamak

B. Nold; G. D. Conway; T. Happel; H. W. Müller; M. Ramisch; V. Rohde; U. Stroth

The intermittent character of turbulent transport is investigated with Langmuir probes in the scrape-off layer and across the separatrix of ASDEX Upgrade Ohmic discharges. Radial profiles of plasma parameters are in reasonable agreement with results from other diagnostics. The probability density functions of ion-saturation current fluctuations exhibit a parabolic relation between skewness and kurtosis. Intermittent blobs and holes are observed outside and inside the nominal separatrix, respectively. They seem to be born at the edge of the plasma and are not the foothills of avalanches launched in the plasma core. A strong shear flow was observed 1 cm radially outside the location where blobs and holes seem to be generated.

Collaboration


Dive into the H. W. Müller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge