Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ha Hyung Kim is active.

Publication


Featured researches published by Ha Hyung Kim.


Biophysical Journal | 2010

Structure and Orientation of a Voltage-Sensor Toxin in Lipid Membranes

Hyun Ho Jung; Hoi Jong Jung; Mirela Milescu; Chul Won Lee; Seungkyu Lee; Ju Yeon Lee; Young-Jae Eu; Ha Hyung Kim; Kenton J. Swartz; Jae Il Kim

Amphipathic protein toxins from tarantula venom inhibit voltage-activated potassium (Kv) channels by binding to a critical helix-turn-helix motif termed the voltage sensor paddle. Although these toxins partition into membranes to bind the paddle motif, their structure and orientation within the membrane are unknown. We investigated the interaction of a tarantula toxin named SGTx with membranes using both fluorescence and NMR spectroscopy. Depth-dependent fluorescence-quenching experiments with brominated lipids suggest that Trp30 in SGTx is positioned approximately 9 A from the center of the bilayer. NMR spectra reveal that the inhibitor cystine knot structure of the toxin does not radically change upon membrane partitioning. Transferred cross-saturation NMR experiments indicate that the toxins hydrophobic protrusion contacts the hydrophobic core of the membrane, whereas most surrounding polar residues remain at interfacial regions of the bilayer. The inferred orientation of the toxin reveals a twofold symmetry in the arrangement of basic and hydrophobic residues, a feature that is conserved among tarantula toxins. These results have important implications for regions of the toxin involved in recognizing membranes and voltage-sensor paddles, and for the mechanisms by which tarantula toxins alter the activity of different types of ion channels.


Biochemistry | 2010

Solution Structure of Gxtx-1E, a High Affinity Tarantula Toxin Interacting with Voltage Sensors in Kv2.1 Potassium Channels.

Seungkyu Lee; Mirela Milescu; Hyun Ho Jung; Ju Yeon Lee; Chan Hyung Bae; Chul Won Lee; Ha Hyung Kim; Kenton J. Swartz; Jae Il Kim

GxTX-1E is a neurotoxin recently isolated from Plesiophrictus guangxiensis venom that inhibits the Kv2.1 channel in pancreatic beta-cells. The sequence of the toxin is related to those of previously studied tarantula toxins that interact with the voltage sensors in Kv channels, and GxTX-1E interacts with the Kv2.1 channel with unusually high affinity, making it particularly useful for structural and mechanistic studies. Here we determined the three-dimensional solution structure of GxTX-1E using NMR spectroscopy and compared it to that of several related tarantula toxins. The molecular structure of GxTX-1E is similar to those of tarantula toxins that target voltage sensors in Kv channels in that it contains an ICK motif, composed of beta-strands, and contains a prominent cluster of solvent-exposed hydrophobic residues surrounded by polar residues. When compared with the structure of SGTx1, a toxin for which mutagenesis data are available, the residue compositions of the two toxins are distinct in regions that are critical for activity, suggesting that their modes of binding to voltage sensors may be different. Interestingly, the structural architecture of GxTX-1E is also similar to that of JZTX-III, a tarantula toxin that interacts with Kv2.1 with low affinity. The most striking structural differences between GxTX-1E and JZTX-III are found in the orientation between the first and second cysteine loops and the C-terminal region of the toxins, suggesting that these regions of GxTX-1E are responsible for its high affinity.


PLOS ONE | 2012

High Yield Production and Refolding of the Double-Knot Toxin, an Activator of TRPV1 Channels

Chanhyung Bae; Jeet Kalia; Inhye Song; JeongHeon Yu; Ha Hyung Kim; Kenton J. Swartz; Jae Il Kim

A unique peptide toxin, named double-knot toxin (DkTx), was recently purified from the venom of the tarantula Ornithoctonus huwena and was found to stably activate TRPV1 channels by targeting the outer pore domain. DkTx has been shown to consist of two inhibitory cysteine-knot (ICK) motifs, referred to as K1 and K2, each containing six cysteine residues. Beyond this initial characterization, however, the structural and functional details about DkTx remains elusive in large part due to the lack of a high yielding methodology for the synthesis and folding of this cysteine-rich peptide. Here, we overcome this obstacle by generating pure DkTx in quantities sufficient for structural and functional analyses. Our methodology entails expression of DkTx in E. coli followed by oxidative folding of the isolated linear peptide. Upon screening of various oxidative conditions for optimizing the folding yield of the toxin, we observed that detergents were required for efficient folding of the linear peptide. Our synthetic DkTx co-eluted with the native toxin on HPLC, and irreversibly activated TRPV1 in a manner identical to native DkTx. Interestingly, we find that DkTx has two interconvertible conformations present in a 1∶6 ratio at equilibrium. Kinetic analysis of DkTx folding suggests that the K1 and K2 domains influence each other during the folding process. Moreover, the CD spectra of the toxins shows that the secondary structures of K1 and K2 remains intact even after separating the two knots. These findings provide a starting point for detailed studies on the structural and functional characterization of DkTx and utilization of this toxin as a tool to explore the elusive mechanisms underlying the polymodal gating of TRPV1.


Biochemistry | 2012

Solution structure of kurtoxin: a gating modifier selective for Cav3 voltage-gated Ca(2+) channels.

Chul Won Lee; Chanhyung Bae; Jaeho Lee; Jae Ha Ryu; Ha Hyung Kim; Toshiyuki Kohno; Kenton J. Swartz; Jae Il Kim

Kurtoxin is a 63-amino acid polypeptide isolated from the venom of the South African scorpion Parabuthus transvaalicus. It is the first and only peptide ligand known to interact with Cav3 (T-type) voltage-gated Ca2+ channels with high affinity and to modify the voltage-dependent gating of these channels. Here we describe the nuclear magnetic resonance (NMR) solution structure of kurtoxin determined using two- and three-dimensional NMR spectroscopy with dynamical simulated annealing calculations. The molecular structure of the toxin was highly similar to those of scorpion α-toxins and contained an α-helix, three β-strands, and several turns stabilized by four disulfide bonds. This so-called “cysteine-stabilized α-helix and β-sheet (CSαβ)” motif is found in a number of functionally varied small proteins. A detailed comparison of the backbone structure of kurtoxin with those of the scorpion α-toxins revealed that three regions [first long loop (Asp8–Ile15), β-hairpin loop (Gly39–Leu42), and C-terminal segment (Arg57–Ala63)] in kurtoxin significantly differ from the corresponding regions in scorpion α-toxins, suggesting that these regions may be important for interacting with Cav3 (T-type) Ca2+ channels. In addition, the surface profile of kurtoxin shows a larger and more focused electropositive patch along with a larger hydrophobic surface compared to those seen on scorpion α-toxins. These distinct surface properties of kurtoxin could explain its binding to Cav3 (T-type) voltage-gated Ca2+ channels.


Journal of Biochemistry | 2015

Molecular characterization of acidic peptide:N-glycanase from the dimorphic yeast Yarrowia lipolytica

Kyung Jin Lee; Jin Young Gil; Sang Yoon Kim; Ohsuk Kwon; Kisung Ko; Dong-Il Kim; Dae Kyong Kim; Ha Hyung Kim; Doo-Byoung Oh

Peptide:N-glycanase (PNGase) A is used preferentially to cleave the glycans from plant and insect glycopeptides. Although many putative PNGase A homologous genes have been found in the plant and fungus kingdoms through sequence similarity analyses, only several PNGases from plants and one from a filamentous fungus have been characterized. In this study, we identified and characterized a PNGase A-like enzyme, PNGase Yl, in the dimorphic yeast Yarrowia lipolytica. The corresponding gene was cloned and recombinantly expressed in Pichia pastoris. The purified enzyme cleaved glycans from glycopeptides with the maximum activity at pH 5. No metal ions were required for full activity, and rather it was repressed by three metal ions (Fe(3+), Cu(2+) and Zn(2+)). Using glycopeptide substrates, PNGase Yl was shown to release various types of N-glycans including high-mannose and complex-type glycans as well as glycans containing core-linked α(1,3)-fucose that are frequently found in plants and insects. Moreover, in comparison with PNGase A, PNGase Yl was able to cleave with higher efficiency the glycans from some denatured glycoproteins. Taken together, our results suggest that PNGase Yl, the first biochemically characterized yeast PNGase A homologue, can be developed through protein engineering as a useful deglycosylation tool for N-glycosylation study.


The Korean Journal of Physiology and Pharmacology | 2014

Effects of Watercress Containing Rutin and Rutin Alone on the Proliferation and Osteogenic Differentiation of Human Osteoblast-like MG-63 Cells

Hanbit Hyun; Heajin Park; Jaehoon Jeong; Jihye Kim; Haesung Kim; Hyun Il Oh; Hye Seong Hwang; Ha Hyung Kim

Most known osteoporosis medicines are effective for bone resorption, and so there is an increasing demand for medicines that stimulate bone formation. Watercress (N. officinale R. Br.) is widely used as a salad green and herbal remedy. This study analyzed a watercress extract using ultra-performance liquid chromatography/mass spectrometry, and identified a rutin as one of its major constituents. Osteogenic-related assays were used to compare the effects of watercress containing rutin (WCR) and rutin alone on the proliferation and differentiation of human osteoblast-like MG-63 cells. The reported data are expressed as percentages relative to the control value (medium alone; assigned as 100%). WCR increased cell proliferation to 125.0±4.0% (mean±SD), as assessed using a cell viability assay, and increased the activity of alkaline phosphatase, an early differentiation marker, to 222.3±33.8%. In addition, WCR increased the expression of collagen type I, another early differentiation marker, to 149.2±2.8%, and increased the degree of mineralization, a marker of the late process of differentiation, to 122.9±3.9%. Rutin alone also increased the activity of ALP (to 154.4±12.2%), the expression of collagen type I (to 126.6±6.2%), and the degree of mineralization (to 112.3±5.0%). Daidzein, which is reported to stimulate bone formation, was used as a positive control; the effects of WCR on proliferation and differentiation were significantly greater than those of daidzein. These results indicate that WCR and rutin can both induce bone formation via the differentiation of MG-63 cells. This is the first study demonstrating the effectiveness of either WCR or rutin as an osteoblast stimulant.


Biochemical and Biophysical Research Communications | 2014

Cleavage of the terminal N-acetylglucosamine of egg-white ovalbumin N-glycans significantly reduces IgE production and Th2 cytokine secretion.

Hye Seong Hwang; Joo-Young Kim; Heajin Park; Jaehoon Jeong; Hanbit Hyun; Taek Joon Yoon; Ho-Young Park; Hee-Don Choi; Ha Hyung Kim

Ovalbumin (OA) is one of the most abundant of the glycoprotein allergens, and induces a T-helper type 2 immune response that results in an IgE-mediated hypersensitivity. In this study, the terminal carbohydrates of N-glycans from intact OA were cleaved with the exoglycosidases galactosidase, mannosidase, and N-acetylglucosaminidase to generate degalactosylated-OA, demannosylated-OA, and de-N-acetylglucosaminylated-OA, respectively, in order to evaluate their role in allergenicity. The exoglycosidase digestion procedure did not result in either degradation or contamination of the three deglycosylated sample, and the digestion efficiency was confirmed by comparing the results of glycan analysis of the three exoglycosidase-treated OAs with that of glycans of intact OA. Mice were immunized with either intact or exoglycosidase-treated OAs, and their respective allergic reactions were compared. IgE production in the de-N-acetylglucosaminylated-OA group was reduced to 58.8% of that in the intact OA group. In addition, the production levels of the cytokines interleukin-4 and interleukin-5 were significantly reduced in the de-N-acetylglucosaminylated-OA group to 53.4% and 45.8% of the levels in the intact OA group, respectively. However, there were almost no changes (or only slight reductions) in the degalactosylated-OA and demannosylated-OA groups, respectively. These results indicate that cleavage of the terminal carbohydrate, and particularly N-acetylglucosamine, reduces the allergenicity of OA. This is the first report of the effect of cleavage of the terminal carbohydrate on glycoprotein allergenicity.


PLOS ONE | 2014

Glycoengineering of interferon-β 1a improves its biophysical and pharmacokinetic properties.

Kyoung Jun Song; In-Soo Yoon; Nam Ah Kim; Dong-Hwan Kim; Jongmin Lee; Hee Jung Lee; Saehyung Lee; Sunghyun Choi; Min-Koo Choi; Ha Hyung Kim; Seong Hoon Jeong; Woo Sung Son; Dae-Duk Kim; Young Kee Shin

The purpose of this study was to develop a biobetter version of recombinant human interferon-β 1a (rhIFN-β 1a) to improve its biophysical properties, such as aggregation, production and stability, and pharmacokinetic properties without jeopardizing its activity. To achieve this, we introduced additional glycosylation into rhIFN-β 1a via site-directed mutagenesis. Glycoengineering of rhIFN-β 1a resulted in a new molecular entity, termed R27T, which was defined as a rhIFN-β mutein with two N-glycosylation sites at 80th (original site) and at an additional 25th amino acid due to a mutation of Thr for Arg at position 27th of rhIFN-β 1a. Glycoengineering had no effect on rhIFN-β ligand-receptor binding, as no loss of specific activity was observed. R27T showed improved stability and had a reduced propensity for aggregation and an increased half-life. Therefore, hyperglycosylated rhIFN-β could be a biobetter version of rhIFN-β 1a with a potential for use as a drug against multiple sclerosis.


Journal of Biochemistry and Molecular Biology | 2014

Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle

Jaeho Lee; Daeun Lee; Hyemin Choi; Ha Hyung Kim; Ho Kim; Jae Sam Hwang; Dong-Gun Lee; Jae Il Kim

Defensins, which are small cationic molecules produced by organisms as part of their innate immune response, share a common structural scaffold that is stabilized by three disulfide bridges. Coprisin is a 43-amino acid defensin-like peptide from Copris tripartitus. Here, we report the intramolecular disulfide connectivity of cysteine-rich coprisin, and show that it is the same as in other insect defensins. The disulfide bond pairings of coprisin were determined by combining the enzymatic cleavage and mass analysis. We found that the loss of any single disulfide bond in coprisin eliminated all antibacterial, but not antifungal, activity. Circular dichroism (CD) analysis showed that two disulfide bonds, Cys20-Cys39 and Cys24-Cys41, stabilize coprisin’s α-helical region. Moreover, a BLAST search against UniProtKB database revealed that coprisin’s α-helical region is highly homologous to those of other insect defensins. [BMB Reports 2014; 47(11): 625-630]


Archives of Biochemistry and Biophysics | 2009

Molecular interaction between kisspeptin decapeptide analogs and a lipid membrane

Ju Yeon Lee; Jung Sun Moon; Young Jae Eu; Chul Won Lee; Sung Tae Yang; Seung Kyu Lee; Hyun Ho Jung; Ha Hyung Kim; Hyewhon Rhim; Jae Young Seong; Jae Il Kim

Kisspeptin-10 is the C-terminal decapeptide amide of kisspeptin, an endogenous ligand for GPR54, and exhibits the same binding and agonist activity as the parent molecule. Although GPR54 is a membrane-embedded protein, details of the molecular interaction between kisspeptin-10 and lipid membranes remain unclear. Here, we performed a series of structural analyses using alanine-scanning analogs of kisspeptin-10 in membrane-mimetic medium. We found that there is a close correlation between lipid membrane binding and agonist activity. For instance, the F10A and non-amidated (NH2-->OH) analogs showed little or no GPR54-agonist activity and elicited no blue shift in tryptophan fluorescence. NMR analysis of kisspeptin-10 analog in DPC micelles revealed it to contain several tight turn structures, encompassing residues Trp3 to Phe10, but no helical conformation like that seen previously with SDS micelles. Together, our results suggest that kisspeptin-10 may activate GPR54 via a ligand transportation pathway incorporating a lipid membrane.

Collaboration


Dive into the Ha Hyung Kim's collaboration.

Top Co-Authors

Avatar

Jae Il Kim

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chul Won Lee

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenton J. Swartz

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hee-Don Choi

Seoul National University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge