Habiba Bougherara
Ryerson University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Habiba Bougherara.
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2008
Rad Zdero; Michael Olsen; Habiba Bougherara; Emil H. Schemitsch
Biomechanical assessments of orthopaedic fracture fixation constructs are increasingly using commercially available analogues such as the fourth-generation composite femur (4GCF). The aim of this study was to compare cancellous screw purchase directly between these surrogates and human femurs, which has not been done previously. Synthetic and human femurs each had one orthopaedic cancellous screw (major diameter, 6.5 mm) inserted along the femoral neck axis and into the spongy bone of the femoral head to a depth of 30 mm. Screws were removed to obtain pull-out force, shear stress, and energy values. The three experimental study groups (n = 6 femurs each) were the 4GCF with a ‘solid’ cancellous matrix, the 4GCF with a ‘cellular’ cancellous matrix, and human femurs. Moreover, a finite element model was developed on the basis of the material properties and anatomical geometry of the two synthetic femurs in order to assess cancellous screw purchase. The results for force, shear stress, and energy respectively were as follows: 4GCF solid femurs, 926.47 ± 66.76 N, 2.84 ± 0.20 MPa, and 0.57 ± 0.04 J; 4GCF cellular femurs, 1409.64 ± 133.36 N, 4.31 ± 0.41 MPa, and 0.99 ± 0.13 J; human femurs, 1523.29 ± 1380.15 N, 4.66 ± 4.22 MPa, and 2.78 ± 3.61 J. No statistical differences were noted when comparing the three experimental groups for pull-out force (p = 0.413), shear stress (p = 0.412), or energy (p = 0.185). The 4GCF with either a ‘solid’ or ‘cellular’ cancellous matrix is a good biomechanical analogue to the human femur at the screw thread—bone interface. This is the first study to perform a three-way investigation of cancellous screw purchase using 4GCFs, human femurs, and finite element analysis.
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2009
Habiba Bougherara; Radovan Zdero; M Miric; Suraj Shah; M Hardisty; Paul Zalzal; Emil H. Schemitsch
Abstract Intramedullary nails are commonly used to repair femoral fractures. Fractures in normal healthy bone often occur in the young during motor vehicle accidents. Although clinically beneficial, bone refracture and implant failure persist. Large variations in human femur quality and geometry have motivated recent experimental use of synthetic femurs that mimic human tissue and the development of increasingly sophisticated theoretical models. Four synthetic femurs were fitted with a T2 femoral nailing system (Stryker, Mahwah, New Jersey, USA). The femurs were not fractured in order to simulate post-operative perfect union. Six configurations were created: retrograde nail with standard locking (RS), retrograde nail with advanced locking ‘off’ (RA-off), retrograde nail with advanced locking ‘on’ (RA-on), antegrade nail with standard locking (AS), antegrade nail with advanced locking ‘off’ (AA-off), and antegrade nail with advanced locking ‘on’ (AA-on). Strain gauges were placed on the medial side of femurs. A 580 N axial load was applied, and the stiffness was measured. Strains were recorded and compared with results from a three-dimensional finite element (FE) model. Experimental axial stiffnesses for RA-off (771.3 N/mm) and RA-on (681.7 N/mm) were similar to intact human cadaveric femurs from previous literature (757 ± 264 N/mm). Conversely, experimental axial stiffnesses for AS (1168.8 N/mm), AA-off (1135.3 N/mm), AA-on (1152.1 N/mm), and RS (1294.0 N/mm) were similar to intact synthetic femurs from previous literature (1290 ± 30 N/mm). There was better agreement between experimental and FE analysis strains for RS (average percentage difference, 11.6 per cent), RA-on (average percentage difference, 11.1 per cent), AA-off (average percentage difference, 13.4 per cent), and AA-on (average percentage difference, 16.0 per cent), than for RA-off (average percentage difference, 33.5 per cent) and AS (average percentage difference, 32.6 per cent). FE analysis was more predictive of strains in the proximal and middle sections of the femur—nail construct than the distal. The results mimicked post-operative clinical stability at low static axial loads once fracture healing begins to occur.
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2010
Habiba Bougherara; Radovan Zdero; Z Mahboob; Anton Dubov; Suraj Shah; Emil H. Schemitsch
This study proposes a novel hybrid total knee replacement (TKR) design to improve stress transfer to bone in the distal femur and, thereby, reduce stress shielding and consequent bone loss. Three-dimensional finite element (FE) models were developed for a standard and a hybrid TKR and validated experimentally. The Duracon knee system (Stryker Canada) was the standard TKR used for the FE models and for the experimental tests. The FE hybrid device was identical to the standard TKR, except that it had an interposing layer of carbon fibre-reinforced polyamide 12 lining the back of the metallic femoral component. A series of experimental surface strain measurements were then taken to validate the FE model of the standard TKR at 3000 N of axial compression and at 0° of knee flexion. Comparison of surface strain values from FE analysis with experiments demonstrated good agreement, yielding a high Pearson correlation coefficient of R2 = 0.94. Under a 3000 N axial load and knee flexion angles simulating full stance (0°), heel strike (20°), and toe off (60°) during normal walking gait, the FE model showed considerable changes in maximum Von Mises stress in the region most susceptible to stress shielding (i.e. the anterior region, just behind the flange of the femoral implant). Specifically, going from a standard to a hybrid TKR caused an increase in maximum stress of 87.4 per cent (0°; from 0.15 to 0.28 MPa), 68.3 per cent (20°; from 1.02 to 1.71 MPa), and 12.6 per cent (60°; from 2.96 to 3.33 MPa). This can potentially decrease stress shielding and subsequent bone loss and knee implant loosening. This is the first report to propose and biomechanically to assess a novel hybrid TKR design that uses a layer of carbon fibre-reinforced polyamide 12 to reduce stress shielding.
Journal of Biomedical Materials Research Part A | 2010
Habiba Bougherara; Martin N. Bureau; L'Hocine Yahia
Adaptive bone remodeling is an important factor that leads to bone resorption in the surrounding femoral bone and implant loosening. Taking into account this factor in the design of hip implants is of clinical importance, because it allows the prediction of the bone-density redistribution and enables the monitoring of bone adaptation after prosthetic implantation. In this article, adaptive bone remodeling around a new biomimetic polymer-composite-based (CF/PA12) hip prosthesis is investigated to evaluate the amount of stress shielding and bone resorption. The design concept of this new prosthesis is based on a hollow substructure made of hydroxyapatite-coated, continuous carbon fiber (CF)-reinforced polyamide 12 (PA12) composite with an internal soft polymer-based core. Strain energy density theory coupled with 3D Finite Element models is used to predict bone density redistributions in the femoral bone before and after total hip replacement (THR) using both polymer-composite and titanium (Ti) stems. The result of numerical simulations of bone remodeling revealed that the CF/PA12 composite stem generates a better bone density pattern compared with the Ti-based stem, indicating the effectiveness of the composite stem to reduce bone resorption caused by stress-shielding phenomenon. This may result in an extended lifetime of THR.
Medical Engineering & Physics | 2011
Habiba Bougherara; Rad Zdero; Anton Dubov; Suraj Shah; Shaheen Khurshid; Emil H. Schemitsch
Total hip arthroplasty is a widespread surgical approach for treating severe osteoarthritis of the human hip. Aseptic loosening of standard metallic hip implants due to stress shielding and bone loss has motivated the development of new materials for hip prostheses. Numerically, a three-dimensional finite element (FE) model that mimicked hip implants was used to compare a new hip stem to two commercially available implants. The hip implants simulated were a novel CF/PA12 carbon-fibre polyamide-based composite hip stem, the Exeter hip stem (Stryker, Mahwah, NJ, USA), and the Omnifit Eon (Stryker, Mahwah, NJ, USA). A virtual axial load of 3 kN was applied to the FE model. Strain and stress distributions were computed. Experimentally, the three hip stems had their distal portions rigidly mounted and had strain gauges placed along the surface at 3 medial and 3 lateral locations. Axial loads of 3 kN were applied. Measurements of axial stiffness and strain were taken and compared to FE analysis. The overall linear correlation between FE model versus experimental strains showed reasonable results for the lines-of-best-fit for the Composite (Pearson R(2)=0.69, slope=0.82), Exeter (Pearson R(2)=0.78, slope=0.59), and Omnifit (Pearson R(2)=0.66, slope=0.45), with some divergence for the most distal strain locations. From FE analysis, the von Mises stress range for the Composite stem was much lower than that in the Omnifit and Exeter implants by 200% and 45%, respectively. The preliminary experiments showed that the Composite stem stiffness (1982 N/mm) was lower than the metallic hip stem stiffnesses (Exeter, 2460 N/mm; Omnifit, 2543 N/mm). This is the first assessment of stress, strain, and stiffness of the CF/PA12 carbon-fibre hip stem compared to standard commercially-available devices.
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2011
B Nicayenzi; Suraj Shah; Emil H. Schemitsch; Habiba Bougherara; Radovan Zdero
Biomechanical researchers increasingly use commercially available and experimentally validated synthetic femurs to mimic human femurs. However, the choice of cancellous bone density for these artificial femurs appears to be done arbitrarily. The aim of the work reported in this paper was to examine the effect of synthetic cancellous bone density on the mechanical behaviour of synthetic femurs. Thirty left, large, fourth-generation composite femurs were mounted onto an Instron material testing system. The femurs were divided evenly into five groups each containing six femurs, each group representing a different synthetic cancellous bone density: 0.08, 0.16, 0.24, 0.32, and 0.48u2009g/cm3. Femurs were tested non-destructively to obtain axial, lateral, and torsional stiffness, followed by destructive tests to measure axial failure load, displacement, and energy. Experimental results yielded the following ranges and the coefficient of determination for a linear regression (R2) with cancellous bone density: axial stiffness (range 2116.5–2530.6u2009N/mm; R2u2009=u20090.94), lateral stiffness (range 204.3–227.8u2009N/mm; R2u2009=u20090.08), torsional stiffness (range 259.9–281.5u2009N/mm; R2u2009=u20090.91), failure load (range 5527.6–11u2009109.3u2009N; R2u2009=u20090.92), failure displacement (range 2.97–6.49u2009mm; R2u2009=u20090.85), and failure energy (range 8.79–42.81u2009J; R2u2009=u20090.91). These synthetic femurs showed no density effect on lateral stiffness and only a moderate influence on axial and torsional stiffness; however, there was a strong density effect on axial failure load, displacement, and energy. Because these synthetic femurs have previously been experimentally validated against human femurs, these trends may be generalized to the clinical situation. This is the first study in the literature to perform such an assessment.
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2010
Radovan Zdero; Habiba Bougherara; Anton Dubov; Suraj Shah; Paul Zalzal; A Mahfud; Emil H. Schemitsch
Abstract Biomechanical studies on femur fracture fixation with orthopaedic implants are numerous in the literature. However, few studies have compared the mechanical stability of these repair constructs in osteoporotic versus normal bone. The present aim was to examine how changes in cortical wall thickness of intact femurs affect biomechanical characteristics. A three-dimensional, linear, isotropic finite element (FE) model of an intact femur was developed in order to predict the effect of bicortical wall thickness, t, relative to the femurs mid-diaphyseal outer diameter, D, over a cortex thickness ratio range of 0 ≤ t/D ≤ 1. The FE model was subjected to loads to obtain axial, lateral, and torsional stiffness. Ten commercially available synthetic femurs were then used to mimic ‘osteoporotic’ bone with t/D = 0.33, while ten synthetic left femurs were used to simulate ‘normal’ bone with t/D = 0.66. Axial, lateral, and torsional stiffness were measured for all femurs. There was excellent agreement between FE analysis and experimental stiffness data for all loading modes with an aggregate average percentage difference of 8 per cent. The FE results for mechanical stiffness versus cortical thickness ratio (0 ≤ t/D ≤ 1) demonstrated exponential trends with the following stiffness ranges: axial stiffness (0 to 2343 N/mm), lateral stiffness (0 to 62 N/mm), and torsional stiffness (0 to 198 N/mm). This is the first study to characterize mechanical stiffness over a wide range of cortical thickness values. These results may have some clinical implications with respect to appropriately differentiating between older and younger human long bones from a mechanical standpoint.
Medical Engineering & Physics | 2012
Suraj Shah; Habiba Bougherara; Emil H. Schemitsch; Rad Zdero
Femurs are the heaviest, longest, and strongest long bones in the human body and are routinely subjected to cyclic forces. Strain gages are commonly employed to experimentally validate finite element models of the femur in order to generate 3D stresses, yet there is little information on a relatively new infrared (IR) thermography technique now available for biomechanics applications. In this study, IR thermography validated with strain gages was used to measure the principal stresses in the artificial femur model from Sawbones (Vashon, WA, USA) increasingly being used for biomechanical research. The femur was instrumented with rosette strain gages and mechanically tested using average axial cyclic forces of 1500 N, 1800 N, and 2100 N, representing 3 times body weight for a 50 kg, 60 kg, and 70 kg person. The femur was oriented at 7° of adduction to simulate the single-legged stance phase of walking. Stress maps were also obtained using an IR thermography camera. Results showed good agreement of IR thermography vs. strain gage data with a correlation of R(2)=0.99 and a slope=1.08 for the straight line of best fit. IR thermography detected the highest principal stresses on the superior-posterior side of the neck, which yielded compressive values of -91.2 MPa (at 1500 N), -96.0 MPa (at 1800 N), and -103.5 MPa (at 2100 N). There was excellent correlation between IR thermography principal stress vs. axial cyclic force at 6 locations on the femur on the lateral (R(2)=0.89-0.99), anterior (R(2)=0.87-0.99), and posterior (R(2)=0.81-0.99) sides. This study shows IR thermographys potential for future biomechanical applications.
Journal of Biomechanical Engineering-transactions of The Asme | 2011
Habiba Bougherara; Ehsan Ur Rahim; Suraj Shah; Anton Dubov; Emil H. Schemitsch; Rad Zdero
With the resurgence of composite materials in orthopaedic applications, a rigorous assessment of stress is needed to predict any failure of bone-implant systems. For current biomechanics research, strain gage measurements are employed to experimentally validate finite element models, which then characterize stress in the bone and implant. Our preliminary study experimentally validates a relatively new nondestructive testing technique for orthopaedic implants. Lock-in infrared (IR) thermography validated with strain gage measurements was used to investigate the stress and strain patterns in a novel composite hip implant made of carbon fiber reinforced polyamide 12 (CF/PA12). The hip implant was instrumented with strain gages and mechanically tested using average axial cyclic forces of 840 N, 1500 N, and 2100 N with the implant at an adduction angle of 15 deg to simulate the single-legged stance phase of walking gait. Three-dimensional surface stress maps were also obtained using an IR thermography camera. Results showed almost perfect agreement of IR thermography versus strain gage data with a Pearson correlation of R(2) = 0.96 and a slope = 1.01 for the line of best fit. IR thermography detected hip implant peak stresses on the inferior-medial side just distal to the neck region of 31.14 MPa (at 840 N), 72.16 MPa (at 1500 N), and 119.86 MPa (at 2100 N). There was strong correlation between IR thermography-measured stresses and force application level at key locations on the implant along the medial (R(2) = 0.99) and lateral (R(2) = 0.83 to 0.99) surface, as well as at the peak stress point (R(2) = 0.81 to 0.97). This is the first study to experimentally validate and demonstrate the use of lock-in IR thermography to obtain three-dimensional stress fields of an orthopaedic device manufactured from a composite material.
Journal of Biomedical Materials Research Part A | 2010
Habiba Bougherara; Václav Klika; František Maršík; Ivo A. Mařík; L'Hocine Yahia
The aim of this article was to present a new thermodynamic-based model for bone remodeling which is able to predict the functional adaptation of bone in response to changes in both mechanical and biochemical environments. The model was based on chemical kinetics and irreversible thermodynamic principles, in which bone is considered as a self-organizing system that exchanges matter, energy and entropy with its surroundings. The governing equations of the mathematical model have been numerically solved using Matlab software and implemented in ANSYS software using the Finite Element Method. With the aid of this model, the whole inner structure of bone was elucidated. The current model suggested that bone remodeling was a dynamic process which was driven by mechanical loading, metabolic factors and other external contributions. The model clearly indicated that in the absence of mechanical stimulus, the bone was not completely resorbed and reaches a new steady state after about 50% of bone loss. This finding agreed with previous clinical studies. Furthermore, results of virtual computations of bone density in a composite femur showed the development of a dense cortical bone around the medullary canal and a dense trabeculae bone between the femoral head and the calcar region of the medial cortex due to compressive stresses. The comparison of the predicted bone density with the structure of the proximal femur obtained from X-rays and using strain energy density gave credibility to the current model.