Radovan Zdero
University of Western Ontario
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Radovan Zdero.
Journal of Trauma-injury Infection and Critical Care | 2008
Max Talbot; Radovan Zdero; Emil H. Schemitsch
BACKGROUND Femur fractures are a common complication of hip arthroplasty. When the stem is well fixed, fracture fixation is the preferred treatment option. Numerous fixation methods have been advocated, using plates or allograft struts. METHODS Vancouver type B1 periprosthetic femur fractures were created distal to a cemented hip stem in 15 third-generation composite femurs. The fractures were fixed with (1) a nonlocking plate and allograft strut, (2) a locking plate and allograft strut, or (3) a locking plate alone. The struts were fixed with cables. After fixation, the constructs underwent cyclic loading for 100,000 cycles. Stiffness of the constructs was determined during bending, torsion, and axial compression before and after cyclic loading. Load to failure was also determined. RESULTS Overall, cyclic loading had little effect on the mechanical properties of these constructs. The two constructs with allografts were significantly stiffer in bending than the construct consisting of only a locking plate. There were no significant differences in axial or torsional stiffness between the constructs. Load to failure of the two constructs with allografts was significantly greater than the locking plate alone. CONCLUSIONS Allograft strut-plate constructs are stiffer in bending and have a higher load to failure than a stand-alone locking plate. When an allograft plate construct is chosen, locking screw seemed to provide no mechanical advantage. All three constructs tested retained their mechanical characteristics after 100,000 cycles of loading. Our initial concern that the cables fixing the allograft strut would loosen appears unfounded.
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2009
Habiba Bougherara; Radovan Zdero; M Miric; Suraj Shah; M Hardisty; Paul Zalzal; Emil H. Schemitsch
Abstract Intramedullary nails are commonly used to repair femoral fractures. Fractures in normal healthy bone often occur in the young during motor vehicle accidents. Although clinically beneficial, bone refracture and implant failure persist. Large variations in human femur quality and geometry have motivated recent experimental use of synthetic femurs that mimic human tissue and the development of increasingly sophisticated theoretical models. Four synthetic femurs were fitted with a T2 femoral nailing system (Stryker, Mahwah, New Jersey, USA). The femurs were not fractured in order to simulate post-operative perfect union. Six configurations were created: retrograde nail with standard locking (RS), retrograde nail with advanced locking ‘off’ (RA-off), retrograde nail with advanced locking ‘on’ (RA-on), antegrade nail with standard locking (AS), antegrade nail with advanced locking ‘off’ (AA-off), and antegrade nail with advanced locking ‘on’ (AA-on). Strain gauges were placed on the medial side of femurs. A 580 N axial load was applied, and the stiffness was measured. Strains were recorded and compared with results from a three-dimensional finite element (FE) model. Experimental axial stiffnesses for RA-off (771.3 N/mm) and RA-on (681.7 N/mm) were similar to intact human cadaveric femurs from previous literature (757 ± 264 N/mm). Conversely, experimental axial stiffnesses for AS (1168.8 N/mm), AA-off (1135.3 N/mm), AA-on (1152.1 N/mm), and RS (1294.0 N/mm) were similar to intact synthetic femurs from previous literature (1290 ± 30 N/mm). There was better agreement between experimental and FE analysis strains for RS (average percentage difference, 11.6 per cent), RA-on (average percentage difference, 11.1 per cent), AA-off (average percentage difference, 13.4 per cent), and AA-on (average percentage difference, 16.0 per cent), than for RA-off (average percentage difference, 33.5 per cent) and AS (average percentage difference, 32.6 per cent). FE analysis was more predictive of strains in the proximal and middle sections of the femur—nail construct than the distal. The results mimicked post-operative clinical stability at low static axial loads once fracture healing begins to occur.
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2010
Habiba Bougherara; Radovan Zdero; Z Mahboob; Anton Dubov; Suraj Shah; Emil H. Schemitsch
This study proposes a novel hybrid total knee replacement (TKR) design to improve stress transfer to bone in the distal femur and, thereby, reduce stress shielding and consequent bone loss. Three-dimensional finite element (FE) models were developed for a standard and a hybrid TKR and validated experimentally. The Duracon knee system (Stryker Canada) was the standard TKR used for the FE models and for the experimental tests. The FE hybrid device was identical to the standard TKR, except that it had an interposing layer of carbon fibre-reinforced polyamide 12 lining the back of the metallic femoral component. A series of experimental surface strain measurements were then taken to validate the FE model of the standard TKR at 3000 N of axial compression and at 0° of knee flexion. Comparison of surface strain values from FE analysis with experiments demonstrated good agreement, yielding a high Pearson correlation coefficient of R2 = 0.94. Under a 3000 N axial load and knee flexion angles simulating full stance (0°), heel strike (20°), and toe off (60°) during normal walking gait, the FE model showed considerable changes in maximum Von Mises stress in the region most susceptible to stress shielding (i.e. the anterior region, just behind the flange of the femoral implant). Specifically, going from a standard to a hybrid TKR caused an increase in maximum stress of 87.4 per cent (0°; from 0.15 to 0.28 MPa), 68.3 per cent (20°; from 1.02 to 1.71 MPa), and 12.6 per cent (60°; from 2.96 to 3.33 MPa). This can potentially decrease stress shielding and subsequent bone loss and knee implant loosening. This is the first report to propose and biomechanically to assess a novel hybrid TKR design that uses a layer of carbon fibre-reinforced polyamide 12 to reduce stress shielding.
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2011
B Nicayenzi; Suraj Shah; Emil H. Schemitsch; Habiba Bougherara; Radovan Zdero
Biomechanical researchers increasingly use commercially available and experimentally validated synthetic femurs to mimic human femurs. However, the choice of cancellous bone density for these artificial femurs appears to be done arbitrarily. The aim of the work reported in this paper was to examine the effect of synthetic cancellous bone density on the mechanical behaviour of synthetic femurs. Thirty left, large, fourth-generation composite femurs were mounted onto an Instron material testing system. The femurs were divided evenly into five groups each containing six femurs, each group representing a different synthetic cancellous bone density: 0.08, 0.16, 0.24, 0.32, and 0.48 g/cm3. Femurs were tested non-destructively to obtain axial, lateral, and torsional stiffness, followed by destructive tests to measure axial failure load, displacement, and energy. Experimental results yielded the following ranges and the coefficient of determination for a linear regression (R2) with cancellous bone density: axial stiffness (range 2116.5–2530.6 N/mm; R2 = 0.94), lateral stiffness (range 204.3–227.8 N/mm; R2 = 0.08), torsional stiffness (range 259.9–281.5 N/mm; R2 = 0.91), failure load (range 5527.6–11 109.3 N; R2 = 0.92), failure displacement (range 2.97–6.49 mm; R2 = 0.85), and failure energy (range 8.79–42.81 J; R2 = 0.91). These synthetic femurs showed no density effect on lateral stiffness and only a moderate influence on axial and torsional stiffness; however, there was a strong density effect on axial failure load, displacement, and energy. Because these synthetic femurs have previously been experimentally validated against human femurs, these trends may be generalized to the clinical situation. This is the first study in the literature to perform such an assessment.
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2010
Radovan Zdero; Habiba Bougherara; Anton Dubov; Suraj Shah; Paul Zalzal; A Mahfud; Emil H. Schemitsch
Abstract Biomechanical studies on femur fracture fixation with orthopaedic implants are numerous in the literature. However, few studies have compared the mechanical stability of these repair constructs in osteoporotic versus normal bone. The present aim was to examine how changes in cortical wall thickness of intact femurs affect biomechanical characteristics. A three-dimensional, linear, isotropic finite element (FE) model of an intact femur was developed in order to predict the effect of bicortical wall thickness, t, relative to the femurs mid-diaphyseal outer diameter, D, over a cortex thickness ratio range of 0 ≤ t/D ≤ 1. The FE model was subjected to loads to obtain axial, lateral, and torsional stiffness. Ten commercially available synthetic femurs were then used to mimic ‘osteoporotic’ bone with t/D = 0.33, while ten synthetic left femurs were used to simulate ‘normal’ bone with t/D = 0.66. Axial, lateral, and torsional stiffness were measured for all femurs. There was excellent agreement between FE analysis and experimental stiffness data for all loading modes with an aggregate average percentage difference of 8 per cent. The FE results for mechanical stiffness versus cortical thickness ratio (0 ≤ t/D ≤ 1) demonstrated exponential trends with the following stiffness ranges: axial stiffness (0 to 2343 N/mm), lateral stiffness (0 to 62 N/mm), and torsional stiffness (0 to 198 N/mm). This is the first study to characterize mechanical stiffness over a wide range of cortical thickness values. These results may have some clinical implications with respect to appropriately differentiating between older and younger human long bones from a mechanical standpoint.
Journal of Orthopaedic Trauma | 2011
Walker Rm; Radovan Zdero; McKee; James P. Waddell; Emil H. Schemitsch
Objectives: The aim of the study was to investigate how superior entry point varies with tibial rotation and to identify landmarks that can be used to identify suitable radiographs for successful intramedullary nail insertion. Methods: The proximal tibia and knee were imaged for 12 cadaveric limbs undergoing 5° increments of internal and external rotation. Medial and lateral arthrotomies were performed, the ideal superior entry point was identified, and a 2-mm Kirschner wire inserted. A second Kirschner wire was sequentially placed at the 5-mm and then the 10-mm position, both medial and lateral to the initial Kirschner wire. Radiographs of the knee were obtained for all increments. The changing position of the ideal nail insertion point was recorded. Results: A 30° arc (range, 25°–40°) provided a suitable anteroposterior radiograph. On the neutral anteroposterior radiograph, the Kirschner wire was 54% ± 1.5% (range, 51–56%) from the medial edge of the tibial plateau. For every 5° of rotation, the Kirschner wire moved 3% of the plateau width. During external rotation, a misleading medial entry point was obtained. A fibular bisector line correlated with an entry point that was ideal or up to 5 mm lateral to this but never medial. The film that best showed the fibular bisector line was between 0° and 10° of internal rotation of the tibia. Conclusions: The fibula head bisector line can be used to avoid choosing external rotation views and, thus, avoid medial insertion points. The current results may help the surgeon prevent malalignment during intramedullary nailing in proximal tibial fractures.
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2014
Mina S. R. Aziz; Matthew Tsuji; Bruce Nicayenzi; Meghan Crookshank; Habiba Bougherara; Emil H. Schemitsch; Radovan Zdero
During orthopedic surgery, screws are inserted by “subjective feel” in humeri for fracture fixation, that is, stopping torque, while trying to prevent accidental over-tightening that causes screw–bone interface failure, that is, stripping torque. However, no studies exist on stopping torque, stripping torque, or stopping/stripping torque ratio in human or artificial humeri. This study evaluated five types of humeri, namely, human fresh-frozen (n = 19), human embalmed (n = 18), human dried (n = 15), artificial “normal” (n = 13), and artificial “osteoporotic” (n = 13). An orthopedic surgeon used a torque screwdriver to insert 3.5-mm-diameter cortical screws into humeral shafts and 6.5-mm-diameter cancellous screws into humeral heads by “subjective feel” to obtain stopping and stripping torques. The five outcome measures were raw and normalized stopping torque, raw and normalized stripping torque, and stopping/stripping torque ratio. Normalization was done as raw torque/screw–bone interface area. For “gold standard” fresh-frozen humeri, cortical screw tests yielded averages of 1312 N mm (raw stopping torque), 30.4 N/mm (normalized stopping torque), 1721 N mm (raw stripping torque), 39.0 N/mm (normalized stripping torque), and 82% (stopping/stripping torque ratio). Similarly, fresh-frozen humeri gave cancellous screw average results of 307 N mm (raw stopping torque), 0.9 N/mm (normalized stopping torque), 392 N mm (raw stripping torque), 1.2 N/mm (normalized stripping torque), and 79% (stopping/stripping torque ratio). Of the five cortical screw parameters for fresh-frozen humeri versus other groups, statistical equivalence (p ≥ 0.05) occurred in four cases (embalmed), three cases (dried), four cases (artificial “normal”), and four cases (artificial “osteoporotic”). Of the five cancellous screw parameters for fresh-frozen humeri versus other groups, statistical equivalence (p ≥ 0.05) occurred in five cases (embalmed), one case (dried), one case (artificial “normal”), and zero cases (artificial “osteoporotic”). Stopping/stripping torque ratios were relatively constant for all groups at 77%–88% (cortical screws) and 79%–92% (cancellous screws).
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2010
Radovan Zdero; Suraj Shah; M Mosli; Habiba Bougherara; Emil H. Schemitsch
Abstract Orthopaedic fracture fixation constructs are typically mounted on to human long bones using cortical screws. Biomechanical studies are increasingly employing commercially available synthetic bones. The aim of this investigation was to examine the effect of the screw pull-out rate and canal reaming on the cortical bone screw purchase strength in synthetic bone. Cylinders made of synthetic material were used to simulate unreamed (foam-filled) and reamed (hollow) human long bone with an outer diameter of 35 mm and a cortex wall thickness of 4 mm. The unreamed and reamed cylinders each had 56 sites along their lengths into which orthopaedic cortical bone screws (major diameter, 3.5 mm) were inserted to engage both cortices. The 16 test groups (n = 7 screw sites per group) had screws extracted at rates of 1 mm/min, 5 mm/min, 10 mm/min, 20 mm/min, 30 mm/min, 40 mm/min, 50 mm/min, and 60 mm/min. The failure force and failure stress increased and were highly linearly correlated with pull-out rate for reamed (R2 = 0.60 and 0.60), but not for unreamed (R2 = 0.00 and 0.00) specimens. The failure displacement and failure energy were relatively unchanged with pull-out rate, yielding low coefficients for unreamed (R2 = 0.25 and 0.00) and reamed (R2 = 0.27 and 0.00) groups. Unreamed versus reamed specimens were statistically different for failure force (p = 0.000) and stress (p = 0.000), but not for failure displacement (p = 0.297) and energy (0.054
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2014
Faisal Sharaf Siddiqui; Suraj Shah; Bruce Nicayenzi; Emil H. Schemitsch; Radovan Zdero; Habiba Bougherara
Traditional high-stiffness metal plates for Vancouver B1 femur shaft fractures below the tip of a hip implant can cause stress shielding, bone resorption, and implant loosening. This is the first study to compare the biomechanics of a traditional metal plate versus a low-stiffness carbon fibre/epoxy composite plate for this injury. A total hip replacement was implanted in two previously validated intact artificial femurs. Femurs were fitted with either a metal or composite plate and had a 5 mm fracture gap created to simulate a Vancouver B1 shaft fracture. Femurs were cyclically loaded using 5 Hz at 7° of adduction with an average axial load of 800 N (range = 400–1200 N). Overall mechanical stiffnesses and femur and plate thermographic stresses were obtained. Femur/metal plate stiffness (698 N/mm) was only 12% higher than femur/composite plate stiffness (625 N/mm). The femur with the composite plate had 22.7% higher combined average stress compared to the femur with the metal plate, having specific differences of 29.5% (anterior view), 33.9% (posterior view), 1.0% (medial view), and 26.4% (lateral view). The composite plate itself had an average 21.1% reduction in stress compared to the metal plate. The composite plate reduced stress shielding, yet provided adequate stiffness.
BioMed Research International | 2015
Laila Ziko; Sandra Riad; Momen Amer; Radovan Zdero; Habiba Bougherara; Asma Amleh
Cisplatin (CisPt) is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2) cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death). Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death).