Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hae-Jin Jung is active.

Publication


Featured researches published by Hae-Jin Jung.


Environmental Science & Technology | 2008

Chemical compositions of subway particles in Seoul, Korea determined by a quantitative single particle analysis.

Hae-Jin Jung; Sunni Kang; Hye Kyeong Kim; Chul-Un Ro

A novel single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was applied to characterize seasonal subway samples collected at a subway station in Seoul, Korea. For all 8 samples collected twice in each season, 4 major types of subway particles, based on their chemical compositions, are significantly encountered: Fe-containing; soil-derived; carbonaceous; and secondary nitrate and/or sulfate particles. Fe-containing particles are generated indoors from wear processes at rail-wheel-brake interfaces while the others may be introduced mostly from the outdoor urban atmosphere. Fe-containing particles are the most frequently encountered with relative abundances in the range of 61-79%. In this study, it is shown that Fe-containing subway particles almost always exist either as partially or fully oxidized forms in underground subway microenvironments. Their relative abundances of Fe-containing particles increase as particle sizes decrease. Relative abundances of Fe-containing particles are higher in morning samples than in afternoon samples because of heavier train traffic in the morning. In the summertime samples, Fe-containing particles are the most abundantly encountered, whereas soil-derived and nitrate/sulfate particles are the least encountered, indicating the air-exchange between indoor and outdoor environments is limited in the summer, owing to the air-conditioning in the subway system. In our work, it was observed that the relative abundances of the particles of outdoor origin vary somewhat among seasonal samples to a lesser degree, reflecting that indoor emission sources predominate.


Analytical Chemistry | 2012

Investigation of the Chemical Mixing State of Individual Asian Dust Particles by the Combined Use of Electron Probe X-ray Microanalysis and Raman Microspectrometry

Sophie Sobanska; HeeJin Hwang; Marie Choël; Hae-Jin Jung; Hyo-Jin Eom; HyeKyeong Kim; Jacques Barbillat; Chul-Un Ro

In this work, quantitative electron probe X-ray microanalysis (EPMA) and Raman microspectrometry (RMS) were applied in combination for the first time to characterize the complex internal structure and physicochemical properties of the same ensemble of Asian dust particles. The analytical methodology to obtain the chemical composition, mixing state, and spatial distribution of chemical species within single particles through the combined use of the two techniques is described. Asian dust aerosol particles collected in Incheon, Korea, during a moderate dust storm event were examined to assess the applicability of the methodology to resolve internal mixtures within single particles. Among 92 individual analyzed particles, EPMA and RMS identified 53% of the particles to be internally mixed with two or more chemical species. Information on the spatial distribution of chemical compounds within internally mixed individual particles can be useful for deciphering the particle aging mechanisms and sources. This study demonstrates that the characterization of individual particles, including chemical speciation and mixing state analysis, can be performed more in detail using EPMA and RMS in combination than with the two single-particle techniques alone.


Environmental Science & Technology | 2010

Single-particle characterization of summertime arctic aerosols collected at Ny-Alesund, Svalbard.

Hong Geng; JiYeon Ryu; Hae-Jin Jung; Hyeok Chung; Kang-Ho Ahn; Chul-Un Ro

Single-particle characterization of summertime Arctic aerosols is useful to understand the impact of air pollutants on the polar atmosphere. In the present study, a quantitative single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was used to characterize 8100 individual particles overall in 16 sets of aerosol samples collected at Ny-Alesund, Svalbard, Norway on 25-31 July, 2007. Based on their X-ray spectral and secondary electron image data of individual particles, 13 particle types were identified, in which particles of marine origin were the most abundant, followed by carbonaceous and mineral dust particles. A number of aged (reacted) sea salt (and mixture) particles produced by the atmospheric reaction of genuine sea-salts, especially with NO(x) or HNO(3), were significantly encountered in almost all the aerosol samples. They greatly outnumbered genuine sea salt particles, implying that the summertime Arctic atmosphere, generally regarded as a clean background environment, is disturbed by anthropogenic air pollutants. The main sources of airborne NO(x) (or HNO(3)) are probably ship emissions around the Arctic Ocean, industry emission from northern Europe and northwestern Siberia, and renoxification of NO(3)(-) within or on the melting snow/ice surface.


Journal of Hazardous Materials | 2012

Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea

Hae-Jin Jung; BoWha Kim; Abdul Malek; Yong Sung Koo; Jong Hoon Jung; Youn-Suk Son; Jo-Chun Kim; HyeKyoung Kim; Chul-Un Ro

Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail-wheel-brake and catenaries-pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the <25 μm size fractions with minor fractions of Mg, Al, Si, Ca, S, and C. From SEM analysis, the floor dusts of the <25 μm size fractions collected on railroad ties appeared to be smaller than 10 μm, indicating that their characteristics should somewhat reflect the characteristics of airborne particles in the tunnel and the platform. As most floor dusts are magnetic, PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 μm, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi station was iron metal, whereas those at Yangjae station contained a small amount of Fe mixed with Na, Mg, Al, Si, S, Ca, and C. The difference in composition of the Fe-containing particles between the two subway stations was attributed to the different ballast tracks used.


Analytical Chemistry | 2010

Speciation of Individual Mineral Particles of Micrometer Size by the Combined Use of Attenuated Total Reflectance-Fourier Transform-Infrared Imaging and Quantitative Energy-Dispersive Electron Probe X-ray Microanalysis Techniques

Hae-Jin Jung; Abdul Malek; JiYeon Ryu; BoWha Kim; Young-Chul Song; HyeKyeong Kim; Chul-Un Ro

Our previous work demonstrated for the first time the potential of the combined use of two techniques, attenuated total reflectance FT-IR (ATR-FT-IR) imaging and a quantitative energy-dispersive electron probe X-ray microanalysis, low-Z particle EPMA, for the characterization of individual aerosol particles. In this work, the speciation of mineral particles was performed on a single particle level for 24 mineral samples, including kaolinite, montmorillonite, vermiculite, talc, quartz, feldspar, calcite, gypsum, and apatite, by the combined use of ATR-FT-IR imaging and low-Z particle EPMA techniques. These two single particle analytical techniques provide complementary information, the ATR-FT-IR imaging on mineral types and low-Z particle EPMA on the morphology and elemental concentrations, on the same individual particles. This work demonstrates that the combined use of the two single particle analytical techniques can powerfully characterize externally heterogeneous mineral particle samples in detail and has great potential for the characterization of airborne mineral dust particles.


Analytical Chemistry | 2013

Iron Speciation of Airborne Subway Particles by the Combined Use of Energy Dispersive Electron Probe X-ray Microanalysis and Raman Microspectrometry

Hyo-Jin Eom; Hae-Jin Jung; Sophie Sobanska; Sang-Gwi Chung; Youn-Suk Son; Jo-Chun Kim; Young Sunwoo; Chul-Un Ro

Quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), known as low-Z particle EPMA, and Raman microspectrometry (RMS) were applied in combination for an analysis of the iron species in airborne PM10 particles collected in underground subway tunnels. Iron species have been reported to be a major chemical species in underground subway particles generated mainly from mechanical wear and friction processes. In particular, iron-containing particles in subway tunnels are expected to be generated with minimal outdoor influence on the particle composition. Because iron-containing particles have different toxicity and magnetic properties depending on their oxidation states, it is important to determine the iron species of underground subway particles in the context of both indoor public health and control measures. A recently developed analytical methodology, i.e., the combined use of low-Z particle EPMA and RMS, was used to identify the chemical species of the same individual subway particles on a single particle basis, and the bulk iron compositions of airborne subway particles were also analyzed by X-ray diffraction. The majority of airborne subway particles collected in the underground tunnels were found to be magnetite, hematite, and iron metal. All the particles collected in the tunnels of underground subway stations were attracted to permanent magnets due mainly to the almost ubiquitous ferrimagnetic magnetite, indicating that airborne subway particles can be removed using magnets as a control measure.


Analytical Chemistry | 2010

Chemical speciation of individual airborne particles by the combined use of quantitative energy-dispersive electron probe X-ray microanalysis and attenuated total reflection Fourier transform-infrared imaging techniques.

Young-Chul Song; JiYeon Ryu; Abdul Malek; Hae-Jin Jung; Chul-Un Ro

In our previous work, it was demonstrated that the combined use of attenuated total reflectance (ATR) FT-IR imaging and quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), named low-Z particle EPMA, had the potential for characterization of individual aerosol particles. Additionally, the speciation of individual mineral particles was performed on a single particle level by the combined use of the two techniques, demonstrating that simultaneous use of the two single particle analytical techniques is powerful for the detailed characterization of externally heterogeneous mineral particle samples and has great potential for characterization of atmospheric mineral dust aerosols. These single particle analytical techniques provide complementary information on the physicochemical characteristics of the same individual particles, such as low-Z particle EPMA on morphology and elemental concentrations and the ATR-FT-IR imaging on molecular species, crystal structures, functional groups, and physical states. In this work, this analytical methodology was applied to characterize an atmospheric aerosol sample collected in Incheon, Korea. Overall, 118 individual particles were observed to be primarily NaNO(3)-containing, Ca- and/or Mg-containing, silicate, and carbonaceous particles, although internal mixing states of the individual particles proved complicated. This work demonstrates that more detailed physiochemical properties of individual airborne particles can be obtained using this approach than when either the low-Z particle EPMA or ATR-FT-IR imaging technique is used alone.


Analytical Chemistry | 2010

Combined use of optical and electron microscopic techniques for the measurement of hygroscopic property, chemical composition, and morphology of individual aerosol particles.

Kang-Ho Ahn; Sun-Man Kim; Hae-Jin Jung; Mi-Jung Lee; Hyo-Jin Eom; Shila Maskey; Chul-Un Ro

In this work, an analytical method for the characterization of the hygroscopic property, chemical composition, and morphology of individual aerosol particles is introduced. The method, which is based on the combined use of optical and electron microscopic techniques, is simple and easy to apply. An optical microscopic technique was used to perform the visual observation of the phase transformation and hygroscopic growth of aerosol particles on a single particle level. A quantitative energy-dispersive electron probe X-ray microanalysis, named low-Z particle EPMA, was used to perform a quantitative chemical speciation of the same individual particles after the measurement of the hygroscopic property. To validate the analytical methodology, the hygroscopic properties of artificially generated NaCl, KCl, (NH(4))(2)SO(4), and Na(2)SO(4) aerosol particles of micrometer size were investigated. The practical applicability of the analytical method for studying the hygroscopic property, chemical composition, and morphology of ambient aerosol particles is demonstrated.


Indoor Air | 2011

Single-particle characterization of indoor aerosol particles collected at an underground shopping area in Seoul, Korea.

Shila Maskey; TaeHee Kang; Hae-Jin Jung; Chul-Un Ro

UNLABELLED In this study, single-particle characterization of aerosol particles collected at an underground shopping area was performed for the first time. A quantitative single-particle analytical technique, low-Z particle electron probe X-ray microanalysis, was used to characterize a total of 7900 individual particles for eight sets of aerosol samples collected at an underground shopping area in Seoul, Korea. Based on secondary electron images and X-ray spectral data of individual particles, fourteen particle types were identified, in which primary soil-derived particles were the most abundant, followed by carbonaceous, Fe-containing, secondary soil-derived, and secondary sea-salt particles. Carbonaceous particles exist in three types: organic carbon, carbon-rich, and CNO-rich. A significant number of textile particles with chemical composition C, N, and O were encountered in some of the aerosol samples, which were from the textile shops and/or from clothes of passersby. Primary soil-derived particles showed seasonal variation, with peak values in spring samples, reflecting higher air exchange between indoor and outdoor environments in the spring. Secondary soil-derived, secondary sea-salt, and ammonium sulfate particles were frequently encountered in winter samples. Fe-containing particles, contributed from a nearby subway station, were in the range of about 19% relative abundances for all samples. PRACTICAL IMPLICATIONS In underground shopping areas, particulate matters can be a considerable health hazard to the workers, shoppers, passersby, and shop-keepers as they spend their considerable time in this closed microenvironment. However, no study on the characteristics of indoor aerosols in an underground shopping area has been reported to our knowledge. This work provides detailed information on characteristics of underground shopping area aerosols on a single particle level.


Analytical Chemistry | 2014

Influence of Collecting Substrates on the Characterization of Hygroscopic Properties of Inorganic Aerosol Particles

Hyo-Jin Eom; Dhrubajyoti Gupta; Xue Li; Hae-Jin Jung; HyeKyeong Kim; Chul-Un Ro

The influence of six collecting substrates with different physical properties on the hygroscopicity measurement of inorganic aerosol particle surrogates and the potential applications of these substrates were examined experimentally. Laboratory-generated single salt particles, such as NaCl, KCl, and (NH4)2SO4, 1-5 μm in size, were deposited on transmission electron microscopy grids (TEM grids), parafilm-M, Al foil, Ag foil, silicon wafer, and cover glass. The particle hygroscopic properties were examined by optical microscopy. Contact angle measurements showed that parafilm-M is hydrophobic, and cover glass, silicon wafer, Al foil, and Ag foil substrates are hydrophilic. The observed deliquescence relative humidity (DRH) values for NaCl, KCl, and (NH4)2SO4 on the TEM grids and parafilm-M substrates agreed well with the literature values, whereas the DRHs obtained on the hydrophilic substrates were consistently ∼1-2% lower, compared to those on the hydrophobic substrates. The water layer adsorbed on the salt crystals prior to deliquescence increases the Gibbs free energy of the salt crystal-substrate system compared to the free energy of the salt droplet-substrate system, which in turn reduces the DRHs. The hydrophilic nature of the substrate does not affect the measured efflorescence RH (ERH) values. However, the Cl(-) or SO4(2-) ions in aqueous salt droplets seem to have reacted with Ag foil to form AgCl or Ag2SO4, respectively, which in turn acts as seeds for the heterogeneous nucleation of the original salts, leading to higher ERHs. The TEM grids were found to be most suitable for the hygroscopic measurements of individual inorganic aerosol particles by optical microscopy and when multiple analytical techniques, such as scanning electron microscopy-energy dispersive X-ray spectroscopy, TEM-EDX, and/or Raman microspectrometry, are applied to the same individual particles.

Collaboration


Dive into the Hae-Jin Jung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shila Maskey

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge