Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haesik Yang is active.

Publication


Featured researches published by Haesik Yang.


Applied Physics Letters | 2005

Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film

Yong Shin Kim; Seung Chul Ha; Kyuwon Kim; Haesik Yang; Sung-Yool Choi; Youn Tae Kim; Joon T. Park; Chang Hoon Lee; Jiyoung Choi; Jungsun Paek; Kwangyeol Lee

Porous tungsten oxide films were deposited onto a sensor substrate with a Si bulk-micromachined hotplate, by drop-coating isopropyl alcohol solution of highly crystalline tungsten oxide (WO2.72) nanorods with average 75nm length and 4nm diameter. The temperature-dependent gas sensing characteristics of the films have been investigated over the mild temperature range from 20to250°C. While the sensing responses for ammonia vapor showed increase in electrical conductivity at temperatures above 150°C as expected for n-type metal oxide sensors, they exhibited the opposite behavior of unusual conductivity decrease below 100°C. Superb sensing ability of the sensors at room temperature in conjunction with their anomalous conductivity behavior might be attributed to unique nanostructural features of very thin, nonstoichiometric WO2.72.


Journal of The Electrochemical Society | 2000

Aluminum Corrosion in Lithium Batteries An Investigation Using the Electrochemical Quartz Crystal Microbalance

Haesik Yang; Kyungjung Kwon; Thomas M. Devine; James W. Evans

An electrochemical quartz crystal microbalance is used in an investigation of the corrosion of aluminum in electrolytes appropriate for lithium batteries. The electrolytes are solutions of LiN(CF 3 SO 2 ) 2 , LiC(CF 3 SO 2 ) 3 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , and LiClO 4 , singly or in a limited number of combinations, in propylene carbonate (PC) and polyethylene glycol dimethyl ether. Aluminum that is scratched or abraded in an inert atmosphere (so that a protective surface film does not reform) undergoes significant corrosion in PC containing LiN(CF 3 SO 2 ) 2 , LiC(CF 3 SO 2 ) 3 , LiCF 3 SO 3 , and LiClO 4 , but forms a protective film in PC containing LiPF 6 , or LiBF 4 A mechanism of corrosion of aluminum in LiN(CF 3 SO 2 ) 2 /PC is proposed.


Lab on a Chip | 2003

A polymer-based microfluidic device for immunosensing biochips

Jong Soo Ko; Hyun C. Yoon; Haesik Yang; Hyeon-Bong Pyo; Kwang Hyo Chung; Sung-Jin Kim; Youn Tae Kim

This paper describes the design, fabrication, and test of a PDMS/PMMA-laminated microfluidic device for an immunosensing biochip. A poly(dimethyl siloxane)(PDMS) top substrate molded by polymer casting and a poly(methyl methacrylate)(PMMA) bottom substrate fabricated by hot embossing are bonded with pressure and hermetically sealed. Two inlet ports and an air vent are opened through the PDMS top substrate, while gold electrodes for electrochemical biosensing are patterned onto the PMMA bottom substrate. The analyte sample is loaded from the sample inlet port to the detection chamber by capillary force, without any external intervening forces. For this and to control the time duration of sample fluid in each compartment of the device, including the inlet port, diffusion barrier, reaction chamber, flow-delay neck, and detection chamber, the fluid conduit has been designed with various geometries of channel width, depth, and shape. Especially, the fluid path has been designed so that the sample flow naturally stops after filling the detection chamber to allow sufficient time for biochemical reaction and subsequent washing steps. As model immunosensing tests for the microfluidic device, functionalizations of ferritin and biotin to the sensing surfaces on gold electrodes and their biospecific interactions with antiferritin antiserum and streptavidin have been investigated. An electrochemical detection method for immunosensing by biocatalyzed precipitation has been developed and applied for signal registration. With the biochip, the whole immunosensing processes could be completed within 30 min.


Analytical Chemistry | 2011

Optimization of Phosphatase- and Redox Cycling-Based Immunosensors and Its Application to Ultrasensitive Detection of Troponin I

Md. Rajibul Akanda; Md. Abdul Aziz; Kyungmin Jo; Vellaiappillai Tamilavan; Myung Ho Hyun; Sinyoung Kim; Haesik Yang

The authors herein report optimized conditions for ultrasensitive phosphatase-based immunosensors (using redox cycling by a reducing agent) that can be simply prepared and readily applied to microfabricated electrodes. The optimized conditions were applied to the ultrasensitive detection of cardiac troponin I in human serum. The preparation of an immunosensing layer was based on passive adsorption of avidin (in carbonate buffer (pH 9.6)) onto indium-tin oxide (ITO) electrodes. The immunosensing layer allows very low levels of nonspecific binding of proteins. The optimum conditions for the enzymatic reaction were investigated in terms of the type of buffer solution, temperature, and concentration of MgCl(2), and the optimum conditions for antigen-antibody binding were determined in terms of incubation time, temperature, and concentration of phosphatase-conjugated IgG. Very importantly, the antigen-antibody binding at 4 °C is extremely important in obtaining reproducible results. Among the four phosphatase substrates (L-ascorbic acid 2-phosphate (AAP), 4-aminophenyl phosphate, 1-naphthyl phosphate, 4-amino-1-naphthyl phosphate) and four phosphatase products (L-ascorbic acid (AA), 4-aminophenol, 1-naphthol, 4-amino-1-naphthol), AAP and AA meet the requirements most for obtaining easy dissolution and high signal-to-background ratios. More importantly, fast AA electrooxidation at the ITO electrodes does not require modification with any electrocatalyst or electron mediator. Furthermore, tris(2-carboxyethyl)phosphine (TCEP) as a reducing agent allows fast redox cycling, along with very low anodic currents at the ITO electrodes. Under these optimized conditions, the detection limit of an immunosensor for troponin I obtained without redox cycling of AA by TCEP is ca. 100 fg/mL, and with redox cycling it is ca. 10 fg/mL. A detection limit of 10 fg/mL was also obtained even when an immunosensing layer was simply formed on a micropatterned ITO electrode. From a practical point of view, it is of great importance that ultralow detection limits can be obtained with simply prepared enzyme-based immunosensors.


Current Opinion in Chemical Biology | 2012

Enzyme-based ultrasensitive electrochemical biosensors

Haesik Yang

Signal amplification in conventional enzyme-based biosensors is not high enough to achieve the ultrasensitive detection of biomolecules. In recent years, signal amplification has been improved by combining enzymatic reactions with redox cycling or employing multienzyme labels per detection probe. Electrochemical-chemical redox cycling and electrochemical-chemical-chemical redox cycling allow ultrasensitive detection simply by including one or two more chemicals in a solution without the use of an additional enzyme and/or electrode. Multiple horseradish peroxidase labels on magnetic bead carriers provide high signal enhancement along with a multiplex detection possibility. In both cases, the detection procedures are the same as those in conventional enzyme-based electrochemical sensors.


Lab on a Chip | 2004

Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumptionElectronic supplementary information (ESI) available: details of numerical simulation. See http://www.rsc.org/suppdata/lc/b3/b313547k/

Dae-Sik Lee; Se Ho Park; Haesik Yang; Kwang-Hyo Chung; Tae Hwan Yoon; Sung-Jin Kim; Kyuwon Kim; Youn Tae Kim

The current paper describes the design, fabrication, and testing of a micromachined submicroliter-volume polymerase chain reaction (PCR) chip with a fast thermal response and very low power consumption. The chip consists of a bulk-micromachined Si component and hot-embossed poly(methyl methacrylate)(PMMA) component. The Si component contains an integral microheater and temperature sensor on a thermally well-isolated membrane, while the PMMA component contains a submicroliter-volume PCR chamber, valves, and channels. The micro hot membrane under the submicroliter-volume chamber is a silicon oxide/silicon nitride/silicon oxide (O/N/O) diaphragm with a thickness of 1.9 microm, resulting in a very low thermal mass. In experiments, the proposed chip only required 45 mW to heat the reaction chamber to 92 degrees C, the denaturation temperature of DNA, plus the heating and cooling rates are about 80 degrees C s(-1) and 60 degrees C s(-1), respectively. We validated, from the fluorescence results from DNA stained with SYBR Green I, that the proposed chip amplified the DNA from vector clone, containing tumor suppressor gene BRCA 1 (127 base pairs at 11th exon), after 30 thermal cycles of 3 s, 5 s, and 5 s at 92 degrees C, 55 degrees C, and 72 degrees C, respectively, in a 200 nL-volume chamber. As for specificity of DNA products, owing to difficulty in analyzing the very small volume PCR results from the micro chip, we vicariously employed the larger volume PCR products after cycling with the same sustaining temperatures as with the micro chip but with much slower ramping rates (3.3 degrees C s(-1) when rising, 2.5 degrees C s(-1) when cooling) within circa 20 minutes on a commercial PCR machine and confirmed the specificity to BRCA 1 (127 base pairs) with agarose gel electrophoresis. Accordingly, the fabricated micro chip demonstrated a very low power consumption and rapid thermal response, both of which are crucial to the development of a fully integrated and battery-powered instrument for a lab-on-a-chip DNA analysis.


Langmuir | 2008

Nanocatalyst-Based Assay Using DNA-Conjugated Au Nanoparticles for Electrochemical DNA Detection

Thangavelu Selvaraju; Jagotamoy Das; Kyungmin Jo; Kiyeon Kwon; Chan-Hwa Huh; Tae Kyu Kim; Haesik Yang

Compared to enzymes, Au nanocatalysts show better long-term stability and are more easily prepared. Au nanoparticles (AuNPs) are used as catalytic labels to achieve ultrasensitive DNA detection via fast catalytic reactions. In addition, magnetic beads (MBs) are employed to permit low nonspecific binding of DNA-conjugated AuNPs and to minimize the electrocatalytic current of AuNPs as well as to take advantage of easy magnetic separation. In a sandwich-type electrochemical sensor, capture-probe-conjugated MBs and an indium-tin oxide electrode modified with a partially ferrocene-modified dendrimer act as the target-binding surface and the signal-generating surface, respectively. A thiolated detection-probe-conjugated AuNP exhibits a high level of unblocked active sites and permits the easy access of p-nitrophenol and NaBH 4 to these sites. Electroactive p-aminophenol is generated at these sites and is then electrooxidized to p-quinoneimine at the electrode. The p-aminophenol redox cycling by NaBH 4 offers large signal amplification. The nonspecific binding of detection-probe-conjugated AuNPs is lowered by washing DNA-linked MB-AuNP assemblies with a formamide-containing solution, and the electrocatalytic oxidation of NaBH 4 by AuNPs is minimized because long-range electron transfer between the electrode and the AuNPs bound to MBs is not feasible. The high signal amplification and low background current enable the detection of 1 fM target DNA.


Biosensors and Bioelectronics | 2002

Glucose sensor using a microfabricated electrode and electropolymerized bilayer films.

Haesik Yang; Taek Dong Chung; Youn Tae Kim; Chang Auck Choi; Chi Hoon Jun; Hee Chan Kim

A new type miniaturized glucose sensor with good selectivity and stable current response has been developed. The structure consists of a recessed rectangular microfabricated platinum electrode, inner layer of two electropolymerized nonconducting films, and outer bilayer of poly(tetrafluoroethylene) (Teflon) and polyurethane (PU) films. Glucose oxidase (GOx) is entrapped during the electropolymerization of a poly(m-phenylenediamine) (PMPD) film in an acetate buffer (AB) solution, on which a highly interference-resistive PMPD film is deposited in a phosphate buffered saline (PBS) solution. The second PMPD film causes no significant decrease in accessibility of glucose to GOx. The inner layer maintains less than 1% permeability to acetaminophen for 12 days. The fairly adhesive outer layer allows stable current response. Due to high permeability, the information about enzyme activity can be obtained without serious error in spite of outer layer intervening between enzymes and solution. The apparent Michaelis-Menten constant and the maximum steady-state current density were 24 mM and 80 microA cm(-2), respectively.


Analytical Chemistry | 2013

Hydroquinone Diphosphate as a Phosphatase Substrate in Enzymatic Amplification Combined with Electrochemical–Chemical–Chemical Redox Cycling for the Detection of E. coli O157:H7

Md. Rajibul Akanda; Vellaiappillai Tamilavan; Seonhwa Park; Kyungmin Jo; Myung Ho Hyun; Haesik Yang

Signal amplification by enzyme labels in enzyme-linked immunosorbent assays (ELISAs) is not sufficient for detecting a low number of bacterial pathogens. It is useful to employ approaches that involve multiple signal amplification such as enzymatic amplification plus redox cycling. An advantageous combination of an enzyme product [for fast electrochemical-chemical-chemical (ECC) redox cycling that involves the product] and an enzyme substrate (for slow side reactions and ECC redox cycling that involve the substrate) has been developed to obtain a low detection limit for E. coli O157:H7 in an electrochemical ELISA that employs redox cycling. In our search for an alkaline phosphatase substrate/product couple that is better than the most common couple of 4-aminophenyl phosphate (APP)/4-aminophenol (AP), we compared five couples: APP/AP, hydroquinone diphosphate (HQDP)/hydroquinone (HQ), L-ascorbic acid 2-phosphate/L-ascorbic acid, 4-amino-1-naphthyl phosphate/4-amino-1-naphthol, and 1-naphthyl phosphate/1-naphthol. In particular, we examined signal-to-background ratios in ECC redox cycling using Ru(NH(3))(6)(3+) and tris(2-carboxyethyl)phosphine as an oxidant and a reductant, respectively. The ECC redox cycling that involves HQ is faster than the cycling that involves AP, whereas the side reactions and ECC redox cycling that involve HQDP are negligible compared to the APP case. These results seem to be due to the fact that the formal potential of HQ is lower than that of AP and that the formal potential of HQDP is higher than that of APP. Enzymatic amplification plus ECC redox cycling based on a HQDP/HQ couple allows us to detect E. coli O157:H7 in a wide range of concentrations from 10(3) to 10(8) colony-forming units/mL.


Analytical Chemistry | 2013

Glucose-Oxidase Label-Based Redox Cycling for an Incubation Period-Free Electrochemical Immunosensor

Amardeep Singh; Seonhwa Park; Haesik Yang

Catalytic reactions of enzyme labels in enzyme-linked immunosorbent assays require a long incubation period to obtain high signal amplification. We present herein a simple immunosensing scheme in which the incubation period is minimized without a large increase in the detection limit. This scheme is based on electrochemical-enzymatic (EN) redox cycling using glucose oxidase (GOx) as an enzyme label, Ru(NH3)6(3+) as a redox mediator, and glucose as an enzyme substrate. Fast electron mediation of Ru(NH3)6(3+) between the electrode and the GOx label attached to the electrode allows high signal amplification. The acquisition of chronocoulometric charges at a potential in the mass transfer-controlled region excludes the influence of the kinetics of Ru(NH3)6(2+) electrooxidation and also facilitates high signal-to-background ratios. The reaction between reduced GOx and Ru(NH3)6(3+) is rapid even in air-saturated Tris buffer, where the faster competitive reaction between reduced GOx and dissolved oxygen also occurs. The direct electrooxidation of glucose at the electrode and the direct electron transfer between glucose and Ru(NH3)6(3+) that undesirably increase background levels occur relatively slowly. The detection limit for the EN redox cycling-based detection of cancer antigen 125 (CA-125) in human serum is slightly higher than 0.1 U/mL for the incubation period of 0 min, and the detection limits for the incubation periods of 5 and 10 min are slightly lower than 0.1 U/mL, indicating that the detection limits are almost similar irrespective of the incubation period and that the immunosensor is highly sensitive.

Collaboration


Dive into the Haesik Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyungmin Jo

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Kyuwon Kim

Incheon National University

View shared research outputs
Top Co-Authors

Avatar

Seonhwa Park

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Sung-Jin Kim

Electronics and Telecommunications Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jagotamoy Das

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Md. Abdul Aziz

King Fahd University of Petroleum and Minerals

View shared research outputs
Top Co-Authors

Avatar

Dae-Sik Lee

Electronics and Telecommunications Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge