Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hagen Richter is active.

Publication


Featured researches published by Hagen Richter.


Nature | 2016

The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA

Ines Fonfara; Hagen Richter; Majda Bratovič; Anaïs Le Rhun; Emmanuelle Charpentier

CRISPR–Cas systems that provide defence against mobile genetic elements in bacteria and archaea have evolved a variety of mechanisms to target and cleave RNA or DNA. The well-studied types I, II and III utilize a set of distinct CRISPR-associated (Cas) proteins for production of mature CRISPR RNAs (crRNAs) and interference with invading nucleic acids. In types I and III, Cas6 or Cas5d cleaves precursor crRNA (pre-crRNA) and the mature crRNAs then guide a complex of Cas proteins (Cascade-Cas3, type I; Csm or Cmr, type III) to target and cleave invading DNA or RNA. In type II systems, RNase III cleaves pre-crRNA base-paired with trans-activating crRNA (tracrRNA) in the presence of Cas9 (refs 13, 14). The mature tracrRNA–crRNA duplex then guides Cas9 to cleave target DNA. Here, we demonstrate a novel mechanism in CRISPR–Cas immunity. We show that type V-A Cpf1 from Francisella novicida is a dual-nuclease that is specific to crRNA biogenesis and target DNA interference. Cpf1 cleaves pre-crRNA upstream of a hairpin structure formed within the CRISPR repeats and thereby generates intermediate crRNAs that are processed further, leading to mature crRNAs. After recognition of a 5′-YTN-3′ protospacer adjacent motif on the non-target DNA strand and subsequent probing for an eight-nucleotide seed sequence, Cpf1, guided by the single mature repeat-spacer crRNA, introduces double-stranded breaks in the target DNA to generate a 5′ overhang. The RNase and DNase activities of Cpf1 require sequence- and structure-specific binding to the hairpin of crRNA repeats. Cpf1 uses distinct active domains for both nuclease reactions and cleaves nucleic acids in the presence of magnesium or calcium. This study uncovers a new family of enzymes with specific dual endoribonuclease and endonuclease activities, and demonstrates that type V-A constitutes the most minimalistic of the CRISPR–Cas systems so far described.


Nucleic Acids Research | 2012

Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis

Hagen Richter; Judith Zoephel; Jeanette Schermuly; Daniel Maticzka; Rolf Backofen; Lennart Randau

The CRISPR arrays found in many bacteria and most archaea are transcribed into a long precursor RNA that is processed into small clustered regularly interspaced short palindromic repeats (CRISPR) RNAs (crRNAs). These RNA molecules can contain fragments of viral genomes and mediate, together with a set of CRISPR-associated (Cas) proteins, the prokaryotic immunity against viral attacks. CRISPR/Cas systems are diverse and the Cas6 enzymes that process crRNAs vary between different subtypes. We analysed CRISPR/Cas subtype I-B and present the identification of novel Cas6 enzymes from the bacterial and archaeal model organisms Clostridium thermocellum and Methanococcus maripaludis C5. Methanococcus maripaludis Cas6b in vitro activity and specificity was determined. Two complementary catalytic histidine residues were identified. RNA-Seq analyses revealed in vivo crRNA processing sites, crRNA abundance and orientation of CRISPR transcription within these two organisms. Individual spacer sequences were identified with strong effects on transcription and processing patterns of a CRISPR cluster. These effects will need to be considered for the application of CRISPR clusters that are designed to produce synthetic crRNAs.


Fems Microbiology Reviews | 2015

Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity

Emmanuelle Charpentier; Hagen Richter; John van der Oost; Malcolm F. White

CRISPR-Cas is an RNA-mediated adaptive immune system that defends bacteria and archaea against mobile genetic elements. Short mature CRISPR RNAs (crRNAs) are key elements in the interference step of the immune pathway. A CRISPR array composed of a series of repeats interspaced by spacer sequences acquired from invading mobile genomes is transcribed as a precursor crRNA (pre-crRNA) molecule. This pre-crRNA undergoes one or two maturation steps to generate the mature crRNAs that guide CRISPR-associated (Cas) protein(s) to cognate invading genomes for their destruction. Different types of CRISPR-Cas systems have evolved distinct crRNA biogenesis pathways that implicate highly sophisticated processing mechanisms. In Types I and III CRISPR-Cas systems, a specific endoribonuclease of the Cas6 family, either standalone or in a complex with other Cas proteins, cleaves the pre-crRNA within the repeat regions. In Type II systems, the trans-acting small RNA (tracrRNA) base pairs with each repeat of the pre-crRNA to form a dual-RNA that is cleaved by the housekeeping RNase III in the presence of the protein Cas9. In this review, we present a detailed comparative analysis of pre-crRNA recognition and cleavage mechanisms involved in the biogenesis of guide crRNAs in the three CRISPR-Cas types.


Molecular Cell | 2016

Adaptation in CRISPR-Cas Systems

Samuel H. Sternberg; Hagen Richter; Emmanuelle Charpentier; Udi Qimron

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins constitute an adaptive immune system in prokaryotes. The system preserves memories of prior infections by integrating short segments of foreign DNA, termed spacers, into the CRISPR array in a process termed adaptation. During the past 3 years, significant progress has been made on the genetic requirements and molecular mechanisms of adaptation. Here we review these recent advances, with a focus on the experimental approaches that have been developed, the insights they generated, and a proposed mechanism for self- versus non-self-discrimination during the process of spacer selection. We further describe the regulation of adaptation and the protein players involved in this fascinating process that allows bacteria and archaea to harbor adaptive immunity.


Fems Microbiology Reviews | 2015

DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes

André Plagens; Hagen Richter; Emmanuelle Charpentier; Lennart Randau

The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) adaptive immune systems use small guide RNAs, the CRISPR RNAs (crRNAs), to mark foreign genetic material, e.g. viral nucleic acids, for degradation. Archaea and bacteria encode a large variety of Cas proteins that bind crRNA molecules and build active ribonucleoprotein surveillance complexes. The evolution of CRISPR-Cas systems has resulted in a diversification of cas genes and a classification of the systems into three types and additional subtypes characterized by distinct surveillance and interfering complexes. Recent crystallographic and biochemical advances have revealed detailed insights into the assembly and DNA/RNA targeting mechanisms of the various complexes. Here, we review our knowledge on the molecular mechanism involved in the DNA and RNA interference stages of type I (Cascade: CRISPR-associated complex for antiviral defense), type II (Cas9) and type III (Csm, Cmr) CRISPR-Cas systems. We further highlight recently reported structural and mechanistic themes shared among these systems.


Journal of Biological Chemistry | 2014

A Complex of Cas Proteins 5, 6, and 7 Is Required for the Biogenesis and Stability of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-derived RNAs (crRNAs) in Haloferax volcanii

Jutta Brendel; Britta Stoll; Sita J. Lange; Kundan Sharma; Christof Lenz; Aris-Edda Stachler; Lisa-Katharina Maier; Hagen Richter; Lisa Nickel; Ruth A. Schmitz; Lennart Randau; Thorsten Allers; Henning Urlaub; Rolf Backofen; Anita Marchfelder

Background: The Cas6 protein is required for generating crRNAs in CRISPR-Cas I and III systems. Results: The Cas6 protein is necessary for crRNA production but not sufficient for crRNA maintenance in Haloferax. Conclusion: A Cascade-like complex is required in the type I-B system for a stable crRNA population. Significance: The CRISPR-Cas system I-B has a similar Cascade complex like types I-A and I-E. The clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR-Cas) system is a prokaryotic defense mechanism against foreign genetic elements. A plethora of CRISPR-Cas versions exist, with more than 40 different Cas protein families and several different molecular approaches to fight the invading DNA. One of the key players in the system is the CRISPR-derived RNA (crRNA), which directs the invader-degrading Cas protein complex to the invader. The CRISPR-Cas types I and III use the Cas6 protein to generate mature crRNAs. Here, we show that the Cas6 protein is necessary for crRNA production but that additional Cas proteins that form a CRISPR-associated complex for antiviral defense (Cascade)-like complex are needed for crRNA stability in the CRISPR-Cas type I-B system in Haloferax volcanii in vivo. Deletion of the cas6 gene results in the loss of mature crRNAs and interference. However, cells that have the complete cas gene cluster (cas1–8b) removed and are transformed with the cas6 gene are not able to produce and stably maintain mature crRNAs. crRNA production and stability is rescued only if cas5, -6, and -7 are present. Mutational analysis of the cas6 gene reveals three amino acids (His-41, Gly-256, and Gly-258) that are essential for pre-crRNA cleavage, whereas the mutation of two amino acids (Ser-115 and Ser-224) leads to an increase of crRNA amounts. This is the first systematic in vivo analysis of Cas6 protein variants. In addition, we show that the H. volcanii I-B system contains a Cascade-like complex with a Cas7, Cas5, and Cas6 core that protects the crRNA.


International Journal of Molecular Sciences | 2013

Exploiting CRISPR/Cas: Interference Mechanisms and Applications

Hagen Richter; Lennart Randau; André Plagens

The discovery of biological concepts can often provide a framework for the development of novel molecular tools, which can help us to further understand and manipulate life. One recent example is the elucidation of the prokaryotic adaptive immune system, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) that protects bacteria and archaea against viruses or conjugative plasmids. The immunity is based on small RNA molecules that are incorporated into versatile multi-domain proteins or protein complexes and specifically target viral nucleic acids via base complementarity. CRISPR/Cas interference machines are utilized to develop novel genome editing tools for different organisms. Here, we will review the latest progress in the elucidation and application of prokaryotic CRISPR/Cas systems and discuss possible future approaches to exploit the potential of these interference machineries.


Cell | 2018

The Biology of CRISPR-Cas: Backward and Forward

Frank Hille; Hagen Richter; Shi Pey Wong; Majda Bratovič; Sarah Ressel; Emmanuelle Charpentier

In bacteria and archaea, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins constitute an adaptive immune system against phages and other foreign genetic elements. Here, we review the biology of the diverse CRISPR-Cas systems and the major progress achieved in recent years in understanding the underlying mechanisms of the three stages of CRISPR-Cas immunity: adaptation, crRNA biogenesis, and interference. The ecology and regulation of CRISPR-Cas in the context of phage infection, the roles of these systems beyond immunity, and the open questions that propel the field forward are also discussed.


RNA Biology | 2013

Comparative analysis of Cas6b processing and CRISPR RNA stability

Hagen Richter; Sita J. Lange; Rolf Backofen; Lennart Randau

The prokaryotic antiviral defense systems CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) employs short crRNAs (CRISPR RNAs) to target invading viral nucleic acids. A short spacer sequence of these crRNAs can be derived from a viral genome and recognizes a reoccurring attack of a virus via base complementarity. We analyzed the effect of spacer sequences on the maturation of crRNAs of the subtype I-B Methanococcus maripaludis C5 CRISPR cluster. The responsible endonuclease, termed Cas6b, bound non-hydrolyzable repeat RNA as a dimer and mature crRNA as a monomer. Comparative analysis of Cas6b processing of individual spacer-repeat-spacer RNA substrates and crRNA stability revealed the potential influence of spacer sequence and length on these parameters. Correlation of these observations with the variable abundance of crRNAs visualized by deep-sequencing analyses is discussed. Finally, insertion of spacer and repeat sequences with archaeal poly-T termination signals is suggested to be prevented in archaeal CRISPR/Cas systems.


Structure | 2016

A Non-Stem-Loop CRISPR RNA Is Processed by Dual Binding Cas6

Yaming Shao; Hagen Richter; Shengfang Sun; Kundan Sharma; Henning Urlaub; Lennart Randau; Hong Li

A subclass of recently discovered CRISPR repeat RNA in bacteria contains minimally recognizable structural features that facilitate an unknown mechanism of recognition and processing by the Cas6 family of endoribonucleases. Cocrystal structures of Cas6 from Methanococcus maripaludis (MmCas6b) bound with its repeat RNA revealed a dual site binding structure and a cleavage site conformation poised for phosphodiester bond breakage. Two non-interacting MmCas6b bind to two separate AAYAA motifs within the same repeat, one distal and one adjacent to the cleavage site. This bound structure potentially competes with a stable but non-productive RNA structure. At the cleavage site, MmCas6b supplies a base pair mimic to stabilize a short 2 base pair stem immediately upstream of the scissile phosphate. Complementary biochemical analyses support the dual-AAYAA binding model and a critical role of the protein-RNA base pair mimic. Our results reveal a previously unknown method of processing non-stem-loop CRISPR RNA by Cas6.

Collaboration


Dive into the Hagen Richter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge