Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lennart Randau is active.

Publication


Featured researches published by Lennart Randau.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A korarchaeal genome reveals insights into the evolution of the Archaea

James G. Elkins; Mircea Podar; David E. Graham; Kira S. Makarova; Yuri I. Wolf; Lennart Randau; Brian P. Hedlund; Céline Brochier-Armanet; Victor Kunin; Iain Anderson; Alla Lapidus; Eugene Goltsman; Kerrie Barry; Eugene V. Koonin; Philip Hugenholtz; Nikos C. Kyrpides; Gerhard Wanner; Paul G. Richardson; Martin Keller; Karl O. Stetter

The candidate division Korarchaeota comprises a group of uncultivated microorganisms that, by their small subunit rRNA phylogeny, may have diverged early from the major archaeal phyla Crenarchaeota and Euryarchaeota. Here, we report the initial characterization of a member of the Korarchaeota with the proposed name, “Candidatus Korarchaeum cryptofilum,” which exhibits an ultrathin filamentous morphology. To investigate possible ancestral relationships between deep-branching Korarchaeota and other phyla, we used whole-genome shotgun sequencing to construct a complete composite korarchaeal genome from enriched cells. The genome was assembled into a single contig 1.59 Mb in length with a G + C content of 49%. Of the 1,617 predicted protein-coding genes, 1,382 (85%) could be assigned to a revised set of archaeal Clusters of Orthologous Groups (COGs). The predicted gene functions suggest that the organism relies on a simple mode of peptide fermentation for carbon and energy and lacks the ability to synthesize de novo purines, CoA, and several other cofactors. Phylogenetic analyses based on conserved single genes and concatenated protein sequences positioned the korarchaeote as a deep archaeal lineage with an apparent affinity to the Crenarchaeota. However, the predicted gene content revealed that several conserved cellular systems, such as cell division, DNA replication, and tRNA maturation, resemble the counterparts in the Euryarchaeota. In light of the known composition of archaeal genomes, the Korarchaeota might have retained a set of cellular features that represents the ancestral archaeal form.


Nature | 2008

Life without RNase P

Lennart Randau; Imke Schröder; Dieter Söll

The universality of ribonuclease P (RNase P), the ribonucleoprotein essential for transfer RNA (tRNA) 5′ maturation, is challenged in the archaeon Nanoarchaeum equitans. Neither extensive computational analysis of the genome nor biochemical tests in cell extracts revealed the existence of this enzyme. Here we show that the conserved placement of its tRNA gene promoters allows the synthesis of leaderless tRNAs, whose presence was verified by the observation of 5′ triphosphorylated mature tRNA species. Initiation of tRNA gene transcription requires a purine, which coincides with the finding that tRNAs with a cytosine in position 1 display unusually extended 5′ termini with an extra purine residue. These tRNAs were shown to be substrates for their cognate aminoacyl-tRNA synthetases. These findings demonstrate how nature can cope with the loss of the universal and supposedly ancient RNase P through genomic rearrangement at tRNA genes under the pressure of genome condensation.


Nucleic Acids Research | 2012

Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis

Hagen Richter; Judith Zoephel; Jeanette Schermuly; Daniel Maticzka; Rolf Backofen; Lennart Randau

The CRISPR arrays found in many bacteria and most archaea are transcribed into a long precursor RNA that is processed into small clustered regularly interspaced short palindromic repeats (CRISPR) RNAs (crRNAs). These RNA molecules can contain fragments of viral genomes and mediate, together with a set of CRISPR-associated (Cas) proteins, the prokaryotic immunity against viral attacks. CRISPR/Cas systems are diverse and the Cas6 enzymes that process crRNAs vary between different subtypes. We analysed CRISPR/Cas subtype I-B and present the identification of novel Cas6 enzymes from the bacterial and archaeal model organisms Clostridium thermocellum and Methanococcus maripaludis C5. Methanococcus maripaludis Cas6b in vitro activity and specificity was determined. Two complementary catalytic histidine residues were identified. RNA-Seq analyses revealed in vivo crRNA processing sites, crRNA abundance and orientation of CRISPR transcription within these two organisms. Individual spacer sequences were identified with strong effects on transcription and processing patterns of a CRISPR cluster. These effects will need to be considered for the application of CRISPR clusters that are designed to produce synthetic crRNAs.


EMBO Reports | 2008

Transfer RNA genes in pieces

Lennart Randau; Dieter Söll

The short genes encoding transfer RNA (tRNA) molecules are highly conserved in both sequence and structure, reflecting the central role of tRNA in protein biosynthesis. The frequent occurrence of fragmented intron‐containing tRNAs that require processing to form contiguous molecules is therefore surprising. Recent discoveries of permuted and split tRNA genes have added to the apparent creativity of nature regarding the organization of these fragmented genes. Here, we provide an overview of the various types of fragmented tRNA genes and examine the hypothesis that the integration of mobile genetic elements—including viruses and plasmids—established such genes in pieces.


Fems Microbiology Reviews | 2015

DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes

André Plagens; Hagen Richter; Emmanuelle Charpentier; Lennart Randau

The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) adaptive immune systems use small guide RNAs, the CRISPR RNAs (crRNAs), to mark foreign genetic material, e.g. viral nucleic acids, for degradation. Archaea and bacteria encode a large variety of Cas proteins that bind crRNA molecules and build active ribonucleoprotein surveillance complexes. The evolution of CRISPR-Cas systems has resulted in a diversification of cas genes and a classification of the systems into three types and additional subtypes characterized by distinct surveillance and interfering complexes. Recent crystallographic and biochemical advances have revealed detailed insights into the assembly and DNA/RNA targeting mechanisms of the various complexes. Here, we review our knowledge on the molecular mechanism involved in the DNA and RNA interference stages of type I (Cascade: CRISPR-associated complex for antiviral defense), type II (Cas9) and type III (Csm, Cmr) CRISPR-Cas systems. We further highlight recently reported structural and mechanistic themes shared among these systems.


Science | 2009

A Cytidine Deaminase Edits C to U in Transfer RNAs in Archaea

Lennart Randau; Bradford J. Stanley; Andrew Kohlway; Sarah Mechta; Yong Xiong; Dieter Söll

Edited Information Flow RNA is generally a faithful mirror of the information encoded in DNA. However, posttranscriptional RNA editing is a widespread phenomenon that can result in a translated protein differing from its gene code. A class of deaminase enzymes related to human APOBEC (apolipoprotein B editing complex protein) edit adenosines in eukaryotes. Randau et al. (p. 657) have discovered an addition to this enzyme family in prokaryotes that edits cytosine to uridine at the highly conserved and structurally critical position 8 in the majority of transfer RNAs of the hyperthermophilic archaebacterium Methanopyrus kandleri. A nonconventional cytosine is edited out to allow a functional transfer RNA structure to form. All canonical transfer RNAs (tRNAs) have a uridine at position 8, involved in maintaining tRNA tertiary structure. However, the hyperthermophilic archaeon Methanopyrus kandleri harbors 30 (out of 34) tRNA genes with cytidine at position 8. Here, we demonstrate C-to-U editing at this location in the tRNA’s tertiary core, and present the crystal structure of a tRNA-specific cytidine deaminase, CDAT8, which has the cytidine deaminase domain linked to a tRNA-binding THUMP domain. CDAT8 is specific for C deamination at position 8, requires only the acceptor stem hairpin for activity, and belongs to a unique family within the “cytidine deaminase–like” superfamily. The presence of this C-to-U editing enzyme guarantees the proper folding and functionality of all M. kandleri tRNAs.


FEBS Letters | 2005

The complete set of tRNA species in Nanoarchaeum equitans

Lennart Randau; Michael Pearson; Dieter Söll

The archaeal parasite Nanoarchaeum equitans was found to generate five tRNA species via a unique process requiring the assembly of seperate 5′ and 3′ tRNA halves [Randau, L., Münch, R., Hohn, M.J., Jahn, D. and Söll, D. (2005) Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5′‐ and 3′‐halves. Nature 433, 537–541]. Biochemical evidence was missing for one of the computationally‐predicted, joined tRNAs designated as tRNATrp. Our RT‐PCR and sequencing results identify this tRNA as tRNALys (CUU) joined at the alternative position between bases 30 and 31. We show that the intron‐containing tRNATrp was misidentified in the initial Nanoarchaeum equitans genome annotation [E. Waters et al. (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc. Natl. Acad. Sci. USA 100, 12984–12988]. Along with a previously unidentified joined tRNAGln (UUG), Nanoarchaeum equitans exhibits 44 tRNAs and is enabled to read all 61 sense codons. Features unique to this set of tRNA molecules are discussed.


Genome Biology | 2012

RNA processing in the minimal organism Nanoarchaeum equitans

Lennart Randau

BackgroundThe minimal genome of the tiny, hyperthermophilic archaeon Nanoarchaeum equitans contains several fragmented genes and revealed unusual RNA processing pathways. These include the maturation of tRNA molecules via the trans-splicing of tRNA halves and genomic rearrangements to compensate for the absence of RNase P.ResultsHere, the RNA processing events in the N. equitans cell are analyzed using RNA-Seq deep sequencing methodology. All tRNA half precursor and tRNA termini were determined and support the tRNA trans-splicing model. The processing of CRISPR RNAs from two CRISPR clusters was verified. Twenty-seven C/D box small RNAs (sRNAs) and a H/ACA box sRNA were identified. The C/D box sRNAs were found to flank split genes, to form dicistronic tRNA-sRNA precursors and to be encoded within the tRNAMet intron.ConclusionsThe presented data provide an overview of the production and usage of small RNAs in a cell that has to survive with a highly reduced genome. N. equitans lost many essential metabolic pathways but maintains highly active CRISPR/Cas and rRNA modification systems that appear to play an important role in genome fragmentation.


RNA Biology | 2014

Small regulatory RNAs in Archaea

Julia Babski; Lisa-Katharina Maier; Ruth Heyer; Katharina Jaschinski; Daniela Prasse; Dominik Jäger; Lennart Randau; Ruth A. Schmitz; Anita Marchfelder; Jörg Soppa

Small regulatory RNAs (sRNAs) are universally distributed in all three domains of life, Archaea, Bacteria, and Eukaryotes. In bacteria, sRNAs typically function by binding near the translation start site of their target mRNAs and thereby inhibit or activate translation. In eukaryotes, miRNAs and siRNAs typically bind to the 3′-untranslated region (3′-UTR) of their target mRNAs and influence translation efficiency and/or mRNA stability. In archaea, sRNAs have been identified in all species investigated using bioinformatic approaches, RNomics, and RNA-Seq. Their size can vary significantly between less than 50 to more than 500 nucleotides. Differential expression of sRNA genes has been studied using northern blot analysis, microarrays, and RNA-Seq. In addition, biological functions have been unraveled by genetic approaches, i.e., by characterization of designed mutants. As in bacteria, it was revealed that archaeal sRNAs are involved in many biological processes, including metabolic regulation, adaptation to extreme conditions, stress responses, and even in regulation of morphology and cellular behavior. Recently, the first target mRNAs were identified in archaea, including one sRNA that binds to the 5′-region of two mRNAs in Methanosarcina mazei Gö1 and a few sRNAs that bind to 3′-UTRs in Sulfolobus solfataricus, three Pyrobaculum species, and Haloferax volcanii, indicating that archaeal sRNAs appear to be able to target both the 5′-UTR or the 3′-UTRs of their respective target mRNAs. In addition, archaea contain tRNA-derived fragments (tRFs), and one tRF has been identified as a major ribosome-binding sRNA in H. volcanii, which downregulates translation in response to stress. Besides regulatory sRNAs, archaea contain further classes of sRNAs, e.g., CRISPR RNAs (crRNAs) and snoRNAs.


Nucleic Acids Research | 2014

In vitro assembly and activity of an archaeal CRISPR-Cas type I-A Cascade interference complex

André Plagens; Vanessa Tripp; Michael Daume; Kundan Sharma; Andreas Klingl; Ajla Hrle; Elena Conti; Henning Urlaub; Lennart Randau

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) systems of type I use a Cas ribonucleoprotein complex for antiviral defense (Cascade) to mediate the targeting and degradation of foreign DNA. To address molecular features of the archaeal type I-A Cascade interference mechanism, we established the in vitro assembly of the Thermoproteus tenax Cascade from six recombinant Cas proteins, synthetic CRISPR RNAs (crRNAs) and target DNA fragments. RNA-Seq analyses revealed the processing pattern of crRNAs from seven T. tenax CRISPR arrays. Synthetic crRNA transcripts were matured by hammerhead ribozyme cleavage. The assembly of type I-A Cascade indicates that Cas3′ and Cas3′′ are an integral part of the complex, and the interference activity was shown to be dependent on the crRNA and the matching target DNA. The reconstituted Cascade was used to identify sequence motifs that are required for efficient DNA degradation and to investigate the role of the subunits Cas7 and Cas3′′ in the interplay with other Cascade subunits.

Collaboration


Dive into the Lennart Randau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge