Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hai-Quan Mao is active.

Publication


Featured researches published by Hai-Quan Mao.


Journal of Controlled Release | 2001

CHITOSAN-DNA NANOPARTICLES AS GENE CARRIERS: SYNTHESIS, CHARACTERIZATION AND TRANSFECTION EFFICIENCY

Hai-Quan Mao; Krishnendu Roy; Vu L. Troung-Le; Kevin A. Janes; Kevin Y. Lin; Yan Wang; J. Thomas August; Kam W. Leong

Chitosan-DNA nanoparticles were prepared using a complex coacervation process. The important parameters for the nanoparticle synthesis were investigated, including the concentrations of DNA, chitosan and sodium sulfate, temperature of the solutions, pH of the buffer, and molecular weights of chitosan and DNA. At an amino group to phosphate group ratio (N/P ratio) between 3 and 8 and a chitosan concentration of 100 microg/ml, the size of particles was optimized to approximately 100--250 nm with a narrow distribution, with a composition of 35.6 and 64.4% by weight for DNA and chitosan, respectively. The surface charge of these particles was slightly positive with a zeta potential of +12 to +18 mV at pH lower than 6.0, and became nearly neutral at pH 7.2. The chitosan-DNA nanoparticles could partially protect the encapsulated plasmid DNA from nuclease degradation as shown by electrophoretic mobility analysis. The transfection efficiency of chitosan-DNA nanoparticles was cell-type dependent. Typically, it was three to four orders of magnitude, in relative light units, higher than background level in HEK293 cells, and two to ten times lower than that achieved by LipofectAMINE-DNA complexes. The presence of 10% fetal bovine serum did not interfere with their transfection ability. Chloroquine could be co-encapsulated in the nanoparticles at 5.2%, but with negligible enhancement effect despite the fact that chitosan only showed limited buffering capacity compared with PEI. The present study also developed three different schemes to conjugate transferrin or KNOB protein to the nanoparticle surface. The transferrin conjugation only yielded a maximum of four-fold increase in their transfection efficiency in HEK293 cells and HeLa cells, whereas KNOB conjugated nanoparticles could improve gene expression level in HeLa cells by 130-fold. Conjugation of PEG on the nanoparticles allowed lyophilization without aggregation, and without loss of bioactivity for at least 1 month in storage. The clearance of the PEGylated nanoparticles in mice following intravenous administration was slower than unmodified nanoparticles at 15 min, and with higher depositions in kidney and liver. However, no difference was observed at the 1-h time point.


Biomaterials | 2009

The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation.

Gregory T. Christopherson; Hongjun Song; Hai-Quan Mao

Neural stem/progenitor cells (NSCs) are capable of self-renewal and differentiation into all types of neural lineage under different biochemical and topographical cues. In this study, we cultured rat hippocampus-derived adult NSCs (rNSCs) on laminin-coated electrospun Polyethersulfone (PES) fiber meshes with average fiber diameters of 283+/-45 nm, 749+/-153 nm and 1452+/-312 nm; and demonstrated that fiber diameter of PES mesh significantly influences rNSC differentiation and proliferation. Under the differentiation condition (in the presence of 1 microM retinoic acid and 1% fetal bovine serum), rNSCs showed a 40% increase in oligodendrocyte differentiation on 283-nm fibers and 20% increase in neuronal differentiation on 749-nm fibers, in comparison to tissue culture polystyrene surface. SEM imaging revealed that cells stretched multi-directionally to follow underlying 283-nm fibers, but extended along a single fiber axis on larger fibers. When cultured on fiber meshes in serum free medium in the presence of 20 ng/mL of FGF-2, rNSCs showed lower proliferation and more rounded morphology compared to that cultured on laminin-coated 2D surface. As the fiber diameter decreased, higher degree of proliferation and cell spreading and lower degree of cell aggregation were observed. This collective evidence indicates fiber topography can play a vital role in regulating differentiation and proliferation of rNSCs in culture.


Journal of Controlled Release | 1998

DNA-polycation nanospheres as non-viral gene delivery vehicles

Kam W. Leong; Hai-Quan Mao; Vu L. Truong-Le; Krishnendu Roy; S. M. Walsh; J. T. August

Nanospheres synthesized by salt-induced complex coacervation of cDNA and polycations such as gelatin and chitosan were evaluated as gene delivery vehicles. DNA-nanospheres in the size range of 200-750 nm could transfect a variety of cell lines. Although the transfection efficiency of the nanospheres was typically lower than that of lipofectamine and calcium phosphate controls in cell culture, the beta-gal expression in muscle of BALB/c mice was higher and more sustained than that achieved by naked DNA and lipofectamine complexes. This gene delivery system has several attractive features: (1) ligands can be conjugated to the nanosphere for targeting or stimulating receptor-mediated endocytosis; (2) lysosomolytic agents can be incorporated to reduce degradation of the DNA in the endosomal and lysosomal compartments; (3) other bioactive agents or multiple plasmids can be co-encapsulated; (4) bioavailability of the DNA can be improved because of protection from serum nuclease degradation by the polymeric matrix; (5) the nanosphere can be lyophilized for storage without loss of bioactivity.


Experimental Neurology | 2010

Current applications and future perspectives of artificial nerve conduits

Xu Jiang; Shawn H. Lim; Hai-Quan Mao; Sing Yian Chew

Artificial nerve guide conduits have the advantage over autografts in terms of their availability and ease of fabrication. However, clinical outcomes associated with the use of artificial nerve conduits are often inferior to that of autografts, particularly over long lesion gaps. There have been significant advances in the designs of artificial nerve conduits over the years. In terms of materials selection and design, a wide variety of new synthetic polymers and biopolymers have been evaluated. The inclusion of nerve conduit lumen fillers has also been demonstrated as essential to enable nerve regeneration across large defect gaps. These lumen filler designs have involved the integration of physical cues for contact guidance and biochemical signals to control cellular function and differentiation. Novel conduit architectural designs using porous and fibrous substrates have also been developed. This review highlights the recent advances in synthetic nerve guide designs for peripheral nerve regeneration, and the in vivo applicability and future prospects of these nerve guide conduits.


Advanced Drug Delivery Reviews | 2003

Polyphosphoesters in drug and gene delivery

Zhong Zhao; Jun Wang; Hai-Quan Mao; Kam W. Leong

Polymers with repeating phosphoester bonds in the backbone are structurally versatile, and biodegradable through hydrolysis, and possibly enzymatic digestion at the phosphoester linkages under physiological conditions. These biodegradable polyphosphoesters are appealing for biological and pharmaceutical applications because of their potential biocompatibility and similarity to bio-macromolecules such as nucleic acids. In the first part of this review, we will focus on one particular structure synthesized by extending oligomeric lactide prepolymers with ethylphosphate groups. This amorphous to semi-crystalline polymer is promising in delivering anti-cancer therapeutics in the form of microspheres. In the second half, we will discuss the conjugation of charged groups to the side chain of the phosphate, constituting one of the few biodegradable cationic polymers in the field for non-viral gene delivery. Capable of delivering exogenous genes to a cell nucleus or providing an extracellular sustained release of DNA, these cationic polyphosphoesters also serve as a valuable model to understand the important characteristics that render a polymer an effective gene carrier.


Advanced Drug Delivery Reviews | 2009

Electrospun scaffolds for stem cell engineering.

Shawn H. Lim; Hai-Quan Mao

Stem cells interact with and respond to a myriad of signals emanating from their extracellular microenvironment. The ability to harness the regenerative potential of stem cells via a synthetic matrix has promising implications for regenerative medicine. Electrospun fibrous scaffolds can be prepared with high degree of control over their structure creating highly porous meshes of ultrafine fibers that resemble the extracellular matrix topography, and are amenable to various functional modifications targeted towards enhancing stem cell survival and proliferation, directing specific stem cell fates, or promoting tissue organization. The feasibility of using such a scaffold platform to present integrated topographical and biochemical signals that are essential to stem cell manipulation has been demonstrated. Future application of this versatile scaffold platform to human embryonic and induced pluripotent stem cells for functional tissue repair and regeneration will further expand its potential for regenerative therapies.


Biomaterials | 2010

The effect of nanofiber-guided cell alignment on the preferential differentiation of neural stem cells

Shawn H. Lim; Xingyu Y. Liu; Hongjun Song; Kevin J. Yarema; Hai-Quan Mao

Stem cells display sensitivity to substrate presentation of topographical cues via changes in cell morphology. These biomechanical responses may be transmitted to the nucleus through cytoskeletal-linked signaling pathways. Here we investigate the influence of aligned substratum topography on the cell morphology and subsequently, the neuronal differentiation capabilities of adult neural stem cells (ANSCs). ANSCs that were cultured on aligned fibers elongated along the major fiber axis. Upon induction of differentiation with retinoic acid, a higher fraction of cells on aligned fibers exhibited markers of neuronal differentiation as compared with cells on random fiber or unpatterned surfaces. This effect was in part due to substrate selectivity, whereby aligned fiber substrates were less receptive to the attachment and continued survival of oligodendrocytes than random fiber or unpatterned substrates. Substrate-induced elongation alone was also effective in upregulating canonical Wnt signaling in ANSCs, which was further potentiated by retinoic acid treatment. These findings suggest a mechanism by which morphological control of stem cells operates in concert with biochemical cues for cell fate determination.


Biomaterials | 2003

Peripheral nerve regeneration with sustained release of poly(phosphoester) microencapsulated nerve growth factor within nerve guide conduits.

Xiaoyun Xu; Woon-Chee Yee; Peter Y.K. Hwang; Hanry Yu; Andrew C.A. Wan; Shujun Gao; Kum-Loong Boon; Hai-Quan Mao; Kam W. Leong; Shu Wang

Prolonged delivery of neurotrophic proteins to the target tissue is valuable in the treatment of various disorders of the nervous system. We have tested in this study whether sustained release of nerve growth factor (NGF) within nerve guide conduits (NGCs), a device used to repair injured nerves, would augment peripheral nerve regeneration. NGF-containing polymeric microspheres fabricated from a biodegradable poly(phosphoester) (PPE) polymer were loaded into silicone or PPE conduits to provide for prolonged, site-specific delivery of NGF. The conduits were used to bridge a 10 mm gap in a rat sciatic nerve model. Three months after implantation, morphological analysis revealed higher values of fiber diameter, fiber population and fiber density and lower G-ratio at the distal end of regenerated nerve cables collected from NGF microsphere-loaded silicone conduits, as compared with those from control conduits loaded with either saline alone, BSA microspheres, or NGF protein without microencapsulation. Beneficial effects on fiber diameter, G-ratio and fiber density were also observed in the permeable PPE NGCs. Thus, the results confirm a long-term promoting effect of exogenous NGF on morphological regeneration of peripheral nerves. The tissue-engineering approach reported in this study of incorporation of a microsphere protein release system into NGCs holds potential for improved functional recovery in patients whose injured nerves are reconstructed by entubulation.


Biomaterials | 2001

A new nerve guide conduit material composed of a biodegradable poly(phosphoester)

Shu Wang; Andrew C.A. Wan; Xiaoyun Xu; Shujun Gao; Hai-Quan Mao; Kam W. Leong; Hanry Yu

There is a resurgence of interest in the development of degradable and biocompatible polymers for fabrication of nerve guide conduits (NGCs) in recent years. Poly(phosphoester) (PPE) polymers are among the attractive candidates in this context, in view of their high biocompatibility, adjustable biodegradability, flexibility in coupling fragile biomolecules under physiological conditions and a wide variety of physicochemical properties. The feasibility of using a biodegradable PPE, P(BHET-EOP/TC), as a novel NGC material was investigated. Two types of conduits were fabricated by using two batches of P(BHET-EOP/TC) with different weight-average molecular weights (Mw) and polydispersity indexes (PI). The polymers as well as conduits were non-toxic to all six types of cells tested, including primary neurones and neuronally differentiated PC12 cells. After in situ implantation in the sciatic nerve of the rat, two types of conduits triggered a similar tissue response, inducing the formation of a thin tissue capsule composed of approximately eight layers of fibroblasts surrounding the conduits at 3 months. Biological performances of the conduits were examined in the rat sciatic nerve model with a 10 mm gap. Although tube fragmentation, even tube breakage, was observed within less than 5 days post-implantation, successful regeneration through the gap occurred in both types of conduits, with four out of 10 in the Type I conduits (Mw 14,900 and PI 2.57) and 11 out of 12 in the Type II conduits (Mw 18,900 and PI 1.72). The degradation of conduits was further evidenced by increased roughness on the tube surface in vivo under scanning electron microscope and a mass decrease in a time-dependent manner in vitro. The Mw of the polymers dropped 33 and 24% in the Type I and II conduits, respectively, in vitro within 3 months. Among their advantages over other biodegradable NGCs, the PPE conduits showed negligible swelling and no crystallisation after implantation. Thus, these PPE conduits can be effective aids for nerve regeneration with potential to be further developed into more sophisticated NGCs that have better control of the conduit micro-environment for improved nerve regeneration.


Biomaterials | 2002

Multi-layered microcapsules for cell encapsulation.

Ser-Mien Chia; Andrew C.A. Wan; Chai-Hoon Quek; Hai-Quan Mao; Xiaoyun Xu; Lu Shen; M.L. Ng; Kam W. Leong; Hanry Yu

Mechanical stability, complete encapsulation, selective permeability, and suitable extra-cellular microenvironment, are the major considerations in designing microcapsules for cell encapsulation. We have developed four types of multi-layered microcapsules that allow selective optimization of these parameters. Primary hepatocytes were used as model cells to test these different microcapsule configurations. Type-1 microcapsules with an average diameter of 400 microm were formed by complexing modified collagen with a ter-polymer shell of 2-hydroxyethyl methylacrylate (HEMA), methacrylic acid (MAA) and methyl methacrylate (MMA), resulting in a capsule thickness of 2-5 microm. Cells in these microcapsules exhibited improved cellular functions over those cultured on collagen monolayers. Type-II microcapsules were formed by encapsulating the Type-I microcapsules in another 2-5 microm ter-polymer shell and a approximately 5 microm collagen layer between the two ter-polymer shells to ensure complete cell encapsulation. Type-II microcapsules comprised of a macro-porous exoskeleton with materials such as alumina sol-gel coated on the Type-I microcapsules. Nano-indendation assay indicated an improved mechanical stability over the Type-I microcapsules. Type-IV microcapsules were created by encapsulating Type-III microcapsules in another 2-5 microm ter-polymer shell, with the aim of imparting a negatively charged smooth surface to minimize plasma protein absorption and ensure complete cell encapsulation. The permeability for nutrient exchange, cellular functions in terms of urea production and mechanical stability of the microcapsules were characterized. The advantages and limitations of these microcapsules for tissue engineering are discussed.

Collaboration


Dive into the Hai-Quan Mao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuan Jiang

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Jun Wang

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Yong Ren

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Russell Martin

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Zhong Zhao

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Xuesong Jiang

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Hanry Yu

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Peng-Chi Zhang

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge