Hai-Yun Xiao
Bristol-Myers Squibb
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hai-Yun Xiao.
Bioorganic & Medicinal Chemistry Letters | 2003
Raj N. Misra; Hai-Yun Xiao; David B. Rawlins; Weifang Shan; Kristen A. Kellar; Janet G. Mulheron; John S. Sack; John S. Tokarski; S. David Kimball; Kevin R. Webster
Structure-activity studies of 1H-pyrazolo[3,4-b]pyridine 1 have resulted in the discovery of potent CDK1/CDK2 selective inhibitor 21h, BMS-265246 (CDK1/cycB IC(50)=6 nM, CDK2/cycE IC(50)=9 nM). The 2,6-difluorophenyl substitution was critical for potent inhibitory activity. A solid state structure of 21j, a close di-fluoro analogue, bound to CDK2 shows the inhibitor resides coincident with the ATP purine binding site and forms important H-bonds with Leu83 on the protein backbone.
Bioorganic & Medicinal Chemistry Letters | 2003
Raj N. Misra; David B. Rawlins; Hai-Yun Xiao; Weifang Shan; Isia Bursuker; Kristin A. Kellar; Janet G. Mulheron; John S. Sack; John S. Tokarski; S. David Kimball; Kevin R. Webster
1H-Pyrazolo[3,4-b]pyridine 3 (SQ-67563) has been shown to be a potent, selective inhibitor of CDK1/CDK2 in vitro. In cells 3 acts as a cytotoxic agent with the ability to block cell cycle progression and/or induce apoptosis. The solid state structure of 3 bound to CDK2 shows 3 resides coincident with the ATP purine binding site and forms important H-bonding interactions with Leu83 on the protein backbone.
Journal of Medicinal Chemistry | 2010
Bingwei V. Yang; David S. Weinstein; Lidia M. Doweyko; Hua Gong; Wayne Vaccaro; Tram N. Huynh; Hai-Yun Xiao; Arthur M. Doweyko; Lorraine I. McKay; Deborah A. Holloway; John E. Somerville; Sium Habte; Mark D. Cunningham; Michele McMahon; Robert Townsend; David J. Shuster; John H. Dodd; Steven G. Nadler; Joel C. Barrish
A series of 2,2-dimethyl-3,3-diphenyl-propanamides as novel glucocorticoid receptor modulators is reported. SAR exploration led to the identification of 4-hydroxyphenyl propanamide derivatives displaying good agonist activity in GR-mediated transrepression assays and reduced agonist activity in GR-mediated transactivation assays. Compounds 17 and 30 showed anti-inflammatory activity comparable to prednisolone in the rat carrageenan-induced paw edema model, with markedly decreased side effects with regard to increases in blood glucose and expression of hepatic tyrosine aminotransferase. A hypothetical binding mode accounting for the induction of the functional activity by a 4-hydroxyl group is proposed.
Bioorganic & Medicinal Chemistry Letters | 2013
James E. Sheppeck; John L. Gilmore; Hai-Yun Xiao; T. G. Murali Dhar; David S. Nirschl; Arthur M. Doweyko; Martin J. Corbett; Mary F. Malley; Jack Z. Gougoutas; Lorraine I. McKay; Mark D. Cunningham; Sium Habte; John H. Dodd; Steven G. Nadler; John E. Somerville; Joel C. Barrish
Modification of a phenolic lead structure based on lessons learned from increasing the potency of steroidal glucocorticoid agonists lead to the discovery of exceptionally potent, nonsteroidal, indazole GR agonists. SAR was developed to achieve good selectivity against other nuclear hormone receptors with the ultimate goal of achieving a dissociated GR agonist as measured by human in vitro assays. The specific interactions by which this class of compounds inhibits GR was elucidated by solving an X-ray co-crystal structure.
Bioorganic & Medicinal Chemistry Letters | 2010
Hai-Yun Xiao; Aaron Balog; Ricardo M. Attar; David J. Fairfax; Linda Fleming; Christian L. Holst; Gregory Scott Martin; Lana M. Rossiter; Jing Chen; Mary-Ellen Cvjic; Janet Dell-John; Jieping Geng; Marco M. Gottardis; Wen-Ching Han; Andrew Nation; Mary T. Obermeier; Cheryl A. Rizzo; Liang Schweizer; Thomas Spires; Weifang Shan; Ashvinikumar V. Gavai; Mark E. Salvati; Gregory D. Vite
A novel series of 4-[3,5-dioxo-11-oxa-4,9-diazatricyclo[5.3.1.0(2,6)]undec-4-yl]-2-trifluoromethyl-benzonitriles has been synthesized. The ability of these compounds to act as antagonists of the androgen receptor was investigated and several were found to have potent activity in vitro and in vivo.
ACS Medicinal Chemistry Letters | 2016
T. G. Murali Dhar; Hai-Yun Xiao; Jenny Xie; Lois D. Lehman-McKeeman; Dauh-Rurng Wu; Marta Dabros; Xiaoxia Yang; Tracy L. Taylor; Xia D. Zhou; Elizabeth M. Heimrich; Rochelle Thomas; Kim W. McIntyre; Bethanne M. Warrack; Hong Shi; Paul Levesque; Jia L. Zhu; James K. Hennan; Praveen Balimane; Zheng Yang; Anthony Marino; Georgia Cornelius; Celia D’Arienzo; Arvind Mathur; Ding Ren Shen; Mary Ellen Cvijic; Luisa Salter-Cid; Joel C. Barrish; Percy H. Carter; Alaric J. Dyckman
Clinical validation of S1P receptor modulation therapy was achieved with the approval of fingolimod (Gilenya, 1) as the first oral therapy for relapsing remitting multiple sclerosis. However, 1 causes a dose-dependent reduction in the heart rate (bradycardia), which occurs within hours after first dose. We disclose the identification of clinical compound BMS-986104 (3d), a novel S1P1 receptor modulator, which demonstrates ligand-biased signaling and differentiates from 1 in terms of cardiovascular and pulmonary safety based on preclinical pharmacology while showing equivalent efficacy in a T-cell transfer colitis model.
Bioorganic & Medicinal Chemistry Letters | 2013
Hai-Yun Xiao; Dauh-Rurng Wu; James E. Sheppeck; Sium Habte; Mark D. Cunningham; John E. Somerville; Joel C. Barrish; Steven G. Nadler; T. G. Murali Dhar
A series of heterocyclic glucocorticoid receptor (GR) modulators with 2,2-dimethyl-3-phenyl-N-(thiazol or thiadiazol-2-yl)propanamide core are described. Structure-activity relationships suggest a combination of H-bond acceptor and a 4-fluorophenyl moiety as being important structural components contributing to the glucocorticoid receptor binding and functional activity for this series of GR modulators.
Journal of Medicinal Chemistry | 2016
Michael G. Yang; Zili Xiao; T. G. Murali Dhar; Hai-Yun Xiao; John L. Gilmore; David Marcoux; Jenny Xie; Kim W. McIntyre; Tracy L. Taylor; Virna Borowski; Elizabeth M. Heimrich; Yu-Wen Li; Jianlin Feng; Alda Fernandes; Zheng Yang; Praveen Balimane; Anthony Marino; Georgia Cornelius; Bethanne M. Warrack; Arvind Mathur; Dauh-Rurng Wu; Peng Li; Anuradha Gupta; Bala Pragalathan; Ding Ren Shen; Mary Ellen Cvijic; Lois D. Lehman-McKeeman; Luisa Salter-Cid; Joel C. Barrish; Percy H. Carter
We describe a highly efficient route for the synthesis of 4a (BMS-986104). A key step in the synthesis is the asymmetric hydroboration of trisubstituted alkene 6. Particularly given the known difficulties involved in this type of transformation (6 → 7), the current methodology provides an efficient approach to prepare this class of compounds. In addition, we disclose the efficacy of 4a in a mouse EAE model, which is comparable to 4c (FTY720). Mechanistically, 4a exhibited excellent remyelinating effects on lysophosphatidylcholine (LPC) induced demyelination in a three-dimensional brain cell culture assay.
Journal of Medicinal Chemistry | 2015
Yang Mg; Dhar Tg; Zili Xiao; Hai-Yun Xiao; Duan Jj; Jiang B; Galella Ma; Mark D. Cunningham; Wang J; Sium Habte; David J. Shuster; Kim W. McIntyre; Julie Carman; Deborah A. Holloway; John E. Somerville; Steven G. Nadler; Luisa Salter-Cid; Joel C. Barrish; David S. Weinstein
An empirical approach to improve the microsomal stability and CYP inhibition profile of lead compounds 1a and 1b led to the identification of 5 (BMS-341) as a dissociated glucocorticoid receptor modulator. Compound 5 showed significant improvements in pharmacokinetic properties and, unlike compounds 1a-b, displayed a linear, dose-dependent pharmacokinetic profile in rats. When tested in a chronic model of adjuvant-induced arthritis in rat, the ED50 of 5 (0.9 mg/kg) was superior to that of both 1a and 1b (8 and 17 mg/kg, respectively).
Bioorganic & Medicinal Chemistry Letters | 2017
Rajeev S. Bhide; Alec Keon; Carolyn A. Weigelt; John S. Sack; Robert J. Schmidt; Shuqun Lin; Hai-Yun Xiao; Steven H. Spergel; James Kempson; William J. Pitts; Julie Carman; Michael A. Poss
The identification of small molecule inhibitors of IRAK4 for the treatment of autoimmune diseases has been an area of intense research. We discovered novel 4,6-diaminonicotinamides which potently inhibit IRAK4. Optimization efforts were aided by X-ray crystal structures of inhibitors bound to IRAK4. Structure activity relationship (SAR) studies led to the identification of compound 29 which exhibited sub-micromolar potency in a LTA stimulated cellular assay.