Haidong Zhu
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Haidong Zhu.
Proceedings of SPIE | 2017
Xinglong Xie; Jianqiang Zhu; Meizhi Sun; Xiao Liang; Jun Kang; Qingwei Yang; Haidong Zhu; Ailin Guo; Qi Gao
The SG II 5PW laser is designed as an open ultra-short high power laser facility that operates at the wavelength of 808nm. Three optical parametric chirped pulse amplification (OPCPA) stages are used to ensure the uncompressed pulse energy up to 260J. With a four pass zigzag compressor, the pulse width is compressed into less than 30fs and the pulse energy about 150J. By using BBO and LBO crystal, the first two OPCPA amplifiers have been accomplished this year. 35J@21fs outputs have been achieved. Since the largest size of the LBO crystal now is only about 100mm×100mm that is not enough for the needs of the third OPCPA amplifier. In our work, potassium deuterium phosphate (DKDP) as a candidate crystal has been studied theoretically and experimentally. Phase-matching parameters for various deuterium doped rate DKDP crystals are calculated. OPCPA amplifier based on 95% deuterium doped rate is designed and the output characteristics are simulated by OPA coupled wave equations. The results show that DKDP crystals with deuterium doped rate higher than 90% can be utilized in ultra-short high power laser systems that support the pulse width shorter than 30 femtoseconds. Still by estimation, when Quasi-phase-matching techniques and collinear design are used in small signal OPCPA amplification, the greatest efficiency can reach above 55%. By experiment it has proved that the output spectrum width can be more than 80nm.
conference on lasers and electro optics | 2016
Jiangqiang Zhu; Xinglong Xie; Qingwei Yang; Jun Kang; Haidong Zhu; Ailin Guo; Ping Zhu; Qi Gao; Zhigang Liu; Quantang Fan; Daizhong Liu; Xiaoping Oyang; Hui Wei; Xiaochao Wang
Shenguang-II 5PW laser is designed to deliver a 150J 30fs laser pulse into the target chamber. In beginning of 2016, 1PW (30J/27fs) outputs have been achieved and are used for physical experiments.
Proceedings of SPIE | 2015
Xinglong Xie; Jiangqiang Zhu; Qingwei Yang; Jun Kang; Haidong Zhu; Ailin Guo; Ping Zhu; Qi Gao
By using the SG-II laser and the ninth-beam as the pump source, the Shenguang-II multi petawatt laser system with three OPCPA stages is designed. Based on the largest size of the commercial gratings provided now by the JY Company, chirped pulses with 260J energy will be delivered after the third stage of OPCPA. When compressed by a four pass compressor, a laser pulse of 150J 30fs (5PW) will be obtained. This laser system is under construction and is expected to be finished in the late of 2015. The paper presents the details of its design and the progress has achieved.
High-power lasers and applications | 2014
Ping Zhu; Xinglong Xie; Jianqiang Zhu; Haidong Zhu; Qingwei Yang; Jun Kang; Ailin Guo; Qi Gao
In extremely intense laser system used for plasma physics experiments, temporal contrast is an important property of the ultra-short pulse. In this paper, we theoretically study the temporal contrast degradation due to wave front deviation in large aperture ultra-short pulse focusing system. Two-step focusing fast Fourier transform (FFT) algorithm with the coordinate transform based on Fresnel approximation in space domain and Fourier integral transform method in time domain were used to simulate the focusing process spatially and temporally, in which the spatial distribution of ultra-short pulse temporal contrast characteristics at the focal spot is related to the wave front in large aperture off-axis parabolic mirror focusing optical system. Firstly, temporal contrast degradation due to wave front noise with higher spatial frequency is analyzed and appropriate evaluation parameter for large aperture ultra-short pulse focusing system is put forward from the perspective of temporal contrast. Secondly, the influence of wave front distortion with lower spatial frequency on temporal contrast is revealed comparing different degradation characteristics of various aberrations. At last, a method by controlling and optimizing the wave front to prevent temporal contrast degradation in large aperture ultra-short laser system is proposed, which is of great significance for high temporal contrast petawatt laser facilities.
Optical Engineering | 2018
Qingwei Yang; Ziruo Cui; Jun Kang; Ailin Guo; Haidong Zhu; Meizhi Sun; Ping Zhu; Qi Gao; Xinglong Xie; Jianqiang Zhu
Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP) | 2018
Haidong Zhu; Chong Liu; Dong Liu; Lailin Ji; Ailin Guo; Xiuqing Jiang; Lin Yang; Ping Zhu; Jianqiang Zhu; Xuechun Li; Baoqiang Zhu; Jian Zhu; Weixin Ma; Xinglong Xie
High-Brightness Sources and Light-driven Interactions | 2018
Xinglong Xie; Jianqiang Zhu; Meizhi Sun; Jun Kang; Haidong Zhu; Qingwei Yang; Ailin Guo; Ping Zhu; Qi Gao; Xiao Liang; Shunhua Yang
High Power Laser Science and Engineering | 2018
Jianqiang Zhu; Xinglong Xie; Meizhi Sun; Jun Kang; Qingwei Yang; Ailin Guo; Haidong Zhu; Ping Zhu; Qi Gao; Xiao Liang; Ziruo Cui; Shunhua Yang; Cheng Zhang; Zunqi Lin
Optik | 2014
Qingwei Yang; Mingwei Liu; Xinglong Xie; Jun Kang; Ailin Guo; Haidong Zhu; Qi Gao
Optik | 2014
Qingwei Yang; Mingwei Liu; Xinglong Xie; Jun Kang; Ailin Guo; Haidong Zhu; Qi Gao