Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haihan Chen is active.

Publication


Featured researches published by Haihan Chen.


Environmental Science & Technology | 2012

Coal Fly Ash as a Source of Iron in Atmospheric Dust

Haihan Chen; Alexander Laskin; Jonas Baltrusaitis; Christopher A. Gorski; Michelle M. Scherer; Vicki H. Grassian

Anthropogenic coal fly ash (FA) aerosol may represent a significant source of bioavailable iron in the open ocean. Few measurements have been made that compare the solubility of atmospheric iron from anthropogenic aerosols and other sources. We report here an investigation of iron dissolution for three FA samples in acidic aqueous solutions and compare the solubilities with that of Arizona test dust (AZTD), a reference material for mineral dust. The effects of pH, simulated cloud processing, and solar radiation on iron solubility have been explored. Similar to previously reported results on mineral dust, iron in aluminosilicate phases provides the predominant component of dissolved iron. Iron solubility of FA is substantially higher than of the crystalline minerals comprising AZTD. Simulated atmospheric processing elevates iron solubility due to significant changes in the morphology of aluminosilicate glass, a dominant material in FA particles. Iron is continuously released into the aqueous solution as FA particles break up into smaller fragments. These results suggest that the assessment of dissolved atmospheric iron deposition fluxes and their effect on the biogeochemistry at the ocean surface should be constrained by the source, environmental pH, iron speciation, and solar radiation.


Journal of Physical Chemistry A | 2011

Heterogeneous photochemistry of trace atmospheric gases with components of mineral dust aerosol.

Haihan Chen; Juan G. Navea; Mark A. Young; Vicki H. Grassian

Mineral dust aerosol is known to provide a reactive surface in the troposphere for heterogeneous chemistry to occur. Certain components of mineral dust aerosol, such as semiconductor metal oxides, can act as chromophores that initiate chemical reactions, while adsorbed organic and inorganic species may also be photoactive. However, relatively little is known about the impact of heterogeneous photochemistry of mineral dust aerosol in the atmosphere. In this study, we investigate the heterogeneous photochemistry of trace atmospheric gases including HNO(3) and O(3) with components of mineral dust aerosol using an environmental aerosol chamber that incorporates a solar simulator. For reaction of HNO(3) with aluminum oxide, broadband irradiation initiates photoreactions to form gaseous NO and NO(2). A complex dynamic balance between surface adsorbed nitrate and gaseous nitrogen oxide products including NO and NO(2) is observed. For heterogeneous photoreactions of O(3), iron oxide shows catalytic decompositions toward O(3) while aluminum oxide is deactivated by ozone exposure. Furthermore, the role of relative humidity, and, thus, adsorbed water, on heterogeneous photochemistry has been explored. The atmospheric implications of these results are discussed.


Environmental Science & Technology | 2013

Iron Dissolution of Dust Source Materials during Simulated Acidic Processing: The Effect of Sulfuric, Acetic, and Oxalic Acids

Haihan Chen; Vicki H. Grassian

Atmospheric organic acids potentially display different capacities in iron (Fe) mobilization from atmospheric dust compared with inorganic acids, but few measurements have been made on this comparison. We report here a laboratory investigation of Fe mobilization of coal fly ash, a representative Fe-containing anthropogenic aerosol, and Arizona test dust, a reference source material for mineral dust, in pH 2 sulfuric acid, acetic acid, and oxalic acid, respectively. The effects of pH and solar radiation on Fe dissolution have also been explored. The relative capacities of these three acids in Fe dissolution are in the order of oxalic acid > sulfuric acid > acetic acid. Oxalate forms mononuclear bidentate ligand with surface Fe and promotes Fe dissolution to the greatest extent. Photolysis of Fe-oxalate complexes further enhances Fe dissolution with the concomitant degradation of oxalate. These results suggest that ligand-promoted dissolution of Fe may play a more significant role in mobilizing Fe from atmospheric dust compared with proton-assisted processing. The role of atmospheric organic acids should be taken into account in global-biogeochemical modeling to better access dissolved atmospheric Fe deposition flux at the ocean surface.


Journal of Physical Chemistry A | 2011

A kinetic study of ozone decomposition on illuminated oxide surfaces.

Haihan Chen; Charles O. Stanier; Mark A. Young; Vicki H. Grassian

The heterogeneous chemistry and photochemistry of ozone on oxide components of mineral dust aerosol, including α-Fe(2)O(3), TiO(2), and α-Al(2)O(3), at different relative humidities have been investigated using an environmental aerosol chamber. The rate and extent of ozone decomposition on these oxide surfaces are found to be a function of the nature of the surface as well as the presence of light and relative humidity. Under dark and dry conditions, only α-Fe(2)O(3) exhibits catalytic decomposition toward ozone, whereas the reactivity of TiO(2) and α-Al(2)O(3) is rapidly quenched upon ozone exposure. However, upon irradiation, TiO(2) is active toward O(3) decomposition and α-Al(2)O(3) remains inactive. In the presence of relative humidity, ozone decay on α-Fe(2)O(3) subject to irradiation or under dark conditions is found to decrease. In contrast, ozone decomposition is enhanced for irradiated TiO(2) as relative humidity initially increases but then begins to decrease at higher relative humidity levels. A kinetic model was used to obtain heterogeneous reaction rates for different homogeneous and heterogeneous reaction pathways taking place in the environmental aerosol chamber. The atmospheric implications of these results are discussed.


Environmental science. Nano | 2014

Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function

Jennifer Borcherding; Jonas Baltrusaitis; Haihan Chen; Larissa V. Stebounova; Chia-Ming Wu; Gayan Rubasinghege; Imali A. Mudunkotuwa; Juan C. Caraballo; Joseph Zabner; Vicki H. Grassian; Alejandro P. Comellas

Given the increased use of iron-containing nanoparticles in a number of applications, it is important to understand any effects that iron-containing nanoparticles can have on the environment and human health. Since iron concentrations are extremely low in body fluids, there is potential that iron-containing nanoparticles may influence the ability of bacteria to scavenge iron for growth, affect virulence and inhibit antimicrobial peptide (AMP) function. In this study, Pseudomonas aeruginosa (PA01) and AMPs were exposed to iron oxide nanoparticles, hematite (α-Fe2O3), of different sizes ranging from 2 to 540 nm (2 ± 1, 43 ± 6, 85 ± 25 and 540 ± 90 nm) in diameter. Here we show that the greatest effect on bacterial growth, biofilm formation, and AMP function impairment is found when exposed to the smallest particles. These results are attributed in large part to enhanced dissolution observed for the smallest particles and an increase in the amount of bioavailable iron. Furthermore, AMP function can be additionally impaired by adsorption onto nanoparticle surfaces. In particular, lysozyme readily adsorbs onto the nanoparticle surface which can lead to loss of peptide activity. Thus, this current study shows that co-exposure of nanoparticles and known pathogens can impact host innate immunity. Therefore, it is important that future studies be designed to further understand these types of impacts.


Environmental Science & Technology | 2012

Heterogeneous atmospheric chemistry of lead oxide particles with nitrogen dioxide increases lead solubility: environmental and health implications.

Jonas Baltrusaitis; Haihan Chen; Gayan Rubasinghege; Vicki H. Grassian

Heterogeneous chemistry of nitrogen dioxide with lead-containing particles is investigated to better understand lead metal mobilization in the environment. In particular, PbO particles, a model lead-containing compound due to its widespread presence as a component of lead paint and as naturally occurring minerals, massicot, and litharge, are exposed to nitrogen dioxide at different relative humidity. X-ray photoelectron spectroscopy (XPS) shows that upon exposure to nitrogen dioxide the surface of PbO particles reacts to form adsorbed nitrates and lead nitrate thin films with the extent of nitrate formation relative humidity dependent. NO(2)-exposed PbO particles are found to have an increase in the amount of lead that dissolves in aqueous suspensions at circumneutral pH compared to particles not exposed. These results point to the potential importance and impact that heterogeneous chemistry with trace atmospheric gases can have on increasing solubility and therefore the mobilization of heavy metals, such as lead, in the environment. This study also shows that surface intermediates that form, such as adsorbed lead nitrates, can yield higher concentrations of lead in water systems. These water systems can include drinking water, groundwater, estuaries, and lakes.


PLOS ONE | 2013

Coal Fly Ash Impairs Airway Antimicrobial Peptides and Increases Bacterial Growth

Jennifer Borcherding; Haihan Chen; Juan C. Caraballo; Jonas Baltrusaitis; Alejandro A. Pezzulo; Joseph Zabner; Vicki H. Grassian; Alejandro P. Comellas

Air pollution is a risk factor for respiratory infections, and one of its main components is particulate matter (PM), which is comprised of a number of particles that contain iron, such as coal fly ash (CFA). Since free iron concentrations are extremely low in airway surface liquid (ASL), we hypothesize that CFA impairs antimicrobial peptides (AMP) function and can be a source of iron to bacteria. We tested this hypothesis in vivo by instilling mice with Pseudomonas aeruginosa (PA01) and CFA and determine the percentage of bacterial clearance. In addition, we tested bacterial clearance in cell culture by exposing primary human airway epithelial cells to PA01 and CFA and determining the AMP activity and bacterial growth in vitro. We report that CFA is a bioavailable source of iron for bacteria. We show that CFA interferes with bacterial clearance in vivo and in primary human airway epithelial cultures. Also, we demonstrate that CFA inhibits AMP activity in vitro, which we propose as a mechanism of our cell culture and in vivo results. Furthermore, PA01 uses CFA as an iron source with a direct correlation between CFA iron dissolution and bacterial growth. CFA concentrations used are very relevant to human daily exposures, thus posing a potential public health risk for susceptible subjects. Although CFA provides a source of bioavailable iron for bacteria, not all CFA particles have the same biological effects, and their propensity for iron dissolution is an important factor. CFA impairs lung innate immune mechanisms of bacterial clearance, specifically AMP activity. We expect that identifying the PM mechanisms of respiratory infections will translate into public health policies aimed at controlling, not only concentration of PM exposure, but physicochemical characteristics that will potentially cause respiratory infections in susceptible individuals and populations.


Environmental Chemistry | 2010

A comparative evaluation of water uptake on several mineral dust sources

Juan G. Navea; Haihan Chen; Min Huang; Gregory R. Carmichel; Vicki H. Grassian

Environmental context. Dust particles produced from wind blown soils are of global significance as these dust particles not only impact visibility, as evident in the recent 2009 Australian dust storm, but also atmospheric chemistry, climate and biogeochemical cycles. The amount of water vapour in the atmosphere (relative humidity) can play a role in these global processes yet there are few studies and little quantitative data on water-dust particle interactions. The focus of this research is on quantifying water-dust particle interactions for several dust sources including Asia and Africa where dust storms are most prevalent. Abstract. Mineral dust aerosol provides a reactive surface in the troposphere. The reactivity of mineral dust depends on the source region as chemical composition and mineralogy of the aerosol affects its interaction with atmospheric gases. Furthermore, the impact of mineral dust aerosol in atmospheric processes and climate is a function of relative humidity. In this study, we have investigated water uptake of complex dust samples. In particular, water uptake as a function of relative humidity has been measured on three different dust sources that have been characterised using a variety of bulk and surface techniques. For these well-characterised dust samples, it is shown that although there are variations in chemical composition and mineralogy, on a per mass basis, water uptake capacities for the three dusts are very similar and are comparable to single component clay samples. These results suggest that the measured uptake of water of these bulk samples is dominated by the clay component.


Chemical Reviews | 2012

Titanium dioxide photocatalysis in atmospheric chemistry.

Haihan Chen; Charith E. Nanayakkara; Vicki H. Grassian


Analyst | 2013

Chemical imaging analysis of environmental particles using the focused ion beam/scanning electron microscopy technique: microanalysis insights into atmospheric chemistry of fly ash

Haihan Chen; Vicki H. Grassian; Laxmikant V. Saraf; Alexander Laskin

Collaboration


Dive into the Haihan Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer Borcherding

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alejandro A. Pezzulo

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge