Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan C. Caraballo is active.

Publication


Featured researches published by Juan C. Caraballo.


Endocrinology | 2012

TSH Regulates Pendrin Membrane Abundance and Enhances Iodide Efflux in Thyroid Cells

Liuska Pesce; Aigerim Bizhanova; Juan C. Caraballo; Whitney Westphal; Maria L. Butti; Alejandro P. Comellas; Peter Kopp

Thyroid hormones are essential for normal development and metabolism. Their synthesis requires transport of iodide into thyroid follicles. The mechanisms involving the apical efflux of iodide into the follicular lumen are poorly elucidated. The discovery of mutations in the SLC26A4 gene in patients with Pendred syndrome (congenital deafness, goiter, and defective iodide organification) suggested a possible role for the encoded protein, pendrin, as an apical iodide transporter. We determined whether TSH regulates pendrin abundance at the plasma membrane and whether this influences iodide efflux. Results of immunoblot and immunofluorescence experiments reveal that TSH and forskolin rapidly increase pendrin abundance at the plasma membrane through the protein kinase A pathway in PCCL-3 rat thyroid cells. The increase in pendrin membrane abundance correlates with a decrease in intracellular iodide as determined by measuring intracellular (125)iodide and can be inhibited by specific blocking of pendrin. Elimination of the putative protein kinase A phosphorylation site T717A results in a diminished translocation to the membrane in response to forskolin. These results demonstrate that pendrin translocates to the membrane in response to TSH and suggest that it may have a physiological role in apical iodide transport and thyroid hormone synthesis.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2011

Hypoxia increases transepithelial electrical conductance and reduces occludin at the plasma membrane in alveolar epithelial cells via PKC-ζ and PP2A pathway

Juan C. Caraballo; Cecilia Yshii; Maria L. Butti; Whitney Westphal; Jennifer Borcherding; Chantal Allamargot; Alejandro P. Comellas

During pulmonary edema, the alveolar space is exposed to a hypoxic environment. The integrity of the alveolar epithelial barrier is required for the reabsorption of alveolar fluid. Tight junctions (TJ) maintain the integrity of this barrier. We set out to determine whether hypoxia creates a dysfunctional alveolar epithelial barrier, evidenced by an increase in transepithelial electrical conductance (G(t)), due to a decrease in the abundance of TJ proteins at the plasma membrane. Alveolar epithelial cells (AEC) exposed to mild hypoxia (Po(2) = 50 mmHg) for 30 and 60 min decreased occludin abundance at the plasma membrane and significantly increased G(t). Other cell adhesion molecules such as E-cadherin and claudins were not affected by hypoxia. AEC exposed to hypoxia increased superoxide, but not hydrogen peroxide (H(2)O(2)). Overexpression of superoxide dismutase 1 (SOD1) but not SOD2 prevented the hypoxia-induced G(t) increase and occludin reduction in AEC. Also, overexpression of catalase had a similar effect as SOD1, despite not detecting any increase in H(2)O(2) during hypoxia. Blocking PKC-ζ and protein phosphatase 2A (PP2A) prevented the hypoxia-induced occludin reduction at the plasma membrane and increase in G(t). In summary, we show that superoxide, PKC-ζ, and PP2A are involved in the hypoxia-induced increase in G(t) and occludin reduction at the plasma membrane in AEC.


Environmental Health Perspectives | 2013

Effects of Eyjafjallajökull volcanic ash on innate immune system responses and bacterial growth in vitro.

Martha M. Monick; Jonas Baltrusaitis; Linda S. Powers; Jennifer Borcherding; Juan C. Caraballo; Imali A. Mudunkotuwa; David W. Peate; Katherine Walters; J Thompson; Vicki H. Grassian; Gunnar Gudmundsson; Alejandro P. Comellas

Background: On 20 March 2010, the Icelandic volcano Eyjafjallajökull erupted for the first time in 190 years. Despite many epidemiological reports showing effects of volcanic ash on the respiratory system, there are limited data evaluating cellular mechanisms involved in the response to ash. Epidemiological studies have observed an increase in respiratory infections in subjects and populations exposed to volcanic eruptions. Methods: We physicochemically characterized volcanic ash, finding various sizes of particles, as well as the presence of several transition metals, including iron. We examined the effect of Eyjafjallajökull ash on primary rat alveolar epithelial cells and human airway epithelial cells (20–100 µg/cm2), primary rat and human alveolar macrophages (5–20 µg/cm2), and Pseudomonas aeruginosa (PAO1) growth (3 µg/104 bacteria). Results: Volcanic ash had minimal effect on alveolar and airway epithelial cell integrity. In alveolar macrophages, volcanic ash disrupted pathogen-killing and inflammatory responses. In in vitro bacterial growth models, volcanic ash increased bacterial replication and decreased bacterial killing by antimicrobial peptides. Conclusions: These results provide potential biological plausibility for epidemiological data that show an association between air pollution exposure and the development of respiratory infections. These data suggest that volcanic ash exposure, while not seriously compromising lung cell function, may be able to impair innate immunity responses in exposed individuals.


Respirology | 2011

Ambient particulate matter affects occludin distribution and increases alveolar transepithelial electrical conductance

Juan C. Caraballo; Cecilia Yshii; Whitney Westphal; Thomas O. Moninger; Alejandro P. Comellas

Background and objective:  Inhaled particulate matter (PM) causes lung inflammation and epithelial dysfunction. However, the direct effect of PM on alveolar epithelial barrier integrity is not well understood. Our aim is to determine whether PM exposure affects the alveolar epithelial cells (AEC) transepithelial electrical conductance (Gt) and tight junction (TJ) proteins.


Environmental science. Nano | 2014

Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function

Jennifer Borcherding; Jonas Baltrusaitis; Haihan Chen; Larissa V. Stebounova; Chia-Ming Wu; Gayan Rubasinghege; Imali A. Mudunkotuwa; Juan C. Caraballo; Joseph Zabner; Vicki H. Grassian; Alejandro P. Comellas

Given the increased use of iron-containing nanoparticles in a number of applications, it is important to understand any effects that iron-containing nanoparticles can have on the environment and human health. Since iron concentrations are extremely low in body fluids, there is potential that iron-containing nanoparticles may influence the ability of bacteria to scavenge iron for growth, affect virulence and inhibit antimicrobial peptide (AMP) function. In this study, Pseudomonas aeruginosa (PA01) and AMPs were exposed to iron oxide nanoparticles, hematite (α-Fe2O3), of different sizes ranging from 2 to 540 nm (2 ± 1, 43 ± 6, 85 ± 25 and 540 ± 90 nm) in diameter. Here we show that the greatest effect on bacterial growth, biofilm formation, and AMP function impairment is found when exposed to the smallest particles. These results are attributed in large part to enhanced dissolution observed for the smallest particles and an increase in the amount of bioavailable iron. Furthermore, AMP function can be additionally impaired by adsorption onto nanoparticle surfaces. In particular, lysozyme readily adsorbs onto the nanoparticle surface which can lead to loss of peptide activity. Thus, this current study shows that co-exposure of nanoparticles and known pathogens can impact host innate immunity. Therefore, it is important that future studies be designed to further understand these types of impacts.


PLOS ONE | 2013

Coal Fly Ash Impairs Airway Antimicrobial Peptides and Increases Bacterial Growth

Jennifer Borcherding; Haihan Chen; Juan C. Caraballo; Jonas Baltrusaitis; Alejandro A. Pezzulo; Joseph Zabner; Vicki H. Grassian; Alejandro P. Comellas

Air pollution is a risk factor for respiratory infections, and one of its main components is particulate matter (PM), which is comprised of a number of particles that contain iron, such as coal fly ash (CFA). Since free iron concentrations are extremely low in airway surface liquid (ASL), we hypothesize that CFA impairs antimicrobial peptides (AMP) function and can be a source of iron to bacteria. We tested this hypothesis in vivo by instilling mice with Pseudomonas aeruginosa (PA01) and CFA and determine the percentage of bacterial clearance. In addition, we tested bacterial clearance in cell culture by exposing primary human airway epithelial cells to PA01 and CFA and determining the AMP activity and bacterial growth in vitro. We report that CFA is a bioavailable source of iron for bacteria. We show that CFA interferes with bacterial clearance in vivo and in primary human airway epithelial cultures. Also, we demonstrate that CFA inhibits AMP activity in vitro, which we propose as a mechanism of our cell culture and in vivo results. Furthermore, PA01 uses CFA as an iron source with a direct correlation between CFA iron dissolution and bacterial growth. CFA concentrations used are very relevant to human daily exposures, thus posing a potential public health risk for susceptible subjects. Although CFA provides a source of bioavailable iron for bacteria, not all CFA particles have the same biological effects, and their propensity for iron dissolution is an important factor. CFA impairs lung innate immune mechanisms of bacterial clearance, specifically AMP activity. We expect that identifying the PM mechanisms of respiratory infections will translate into public health policies aimed at controlling, not only concentration of PM exposure, but physicochemical characteristics that will potentially cause respiratory infections in susceptible individuals and populations.


American Journal of Respiratory Cell and Molecular Biology | 2013

Protein Kinase C–ζ Mediates Lung Injury Induced by Diesel Exhaust Particles

Juan C. Caraballo; Jennifer Borcherding; Peter S. Thorne; Alejandro P. Comellas

Recently, we reported that diesel exhaust particles (DEPs) disrupt tight junctions (TJs) in alveolar epithelial cells (AECs) via an increase in reactive oxygen species (ROS). In this study, we investigated the role of protein kinase C (PKC)-ζ activation in DEP-induced lung injury. C57/bl6 mice were instilled intratracheally with 50 μl of saline containing 100 μg of DEPs or titanium dioxide (TiO2). Twenty-four hours later, bronchoalveolar lavage was performed to assess neutrophil counts and protein concentrations. In addition, in vitro experiments were performed in primary rat and human AECs exposed to DEPs (50 μg/cm(2)) for 3 hours. Transepithelial electrical conductance was measured, and TJ protein association was analyzed by immunoprecipitation. To determine whether the overexpression of antioxidants prevented DEP-induced lung injury, AECs and mice were infected with adenoviruses containing catalase and manganese superoxide dismutase (MnSOD) plasmids. In vivo, the overexpression of catalase and MnSOD prevented DEP-induced neutrophil recruitment. The inhibition of PKC-ζ activation also prevented DEP-induced neutrophil recruitment in vivo. In vitro, DEPs activated PKC-ζ in AECs, but not in alveolar macrophages. Using a specific myristolated PKC-ζ pseudosubstrate pepetide (PKC-ζ ps), we showed that PKC-ζ mediated the DEP-induced dissociation of occludin and zonula occludin-1 (ZO1) in rat and human AECs. In addition, the overexpression of constitutively active PKC-ζ induced the dissociation of occludin and ZO1 in AECs. DEP-induced TJ disruption occurs via PKC-ζ. TJ disruption seems to be in part responsible for DEP-induced lung injury.


PLOS ONE | 2014

Role of PON in Anoxia-Reoxygenation Injury: A Drosophila Melanogaster Transgenic Model

Juan C. Caraballo; Jennifer Borcherding; Michael V. Rector; Emma E. Hornick; David A. Stoltz; Joseph Zabner; Alejandro P. Comellas

Background Paraoxonase 1 (PON1) is a protein found associated with high density lipoprotein (HDL), thought to prevent oxidative modification of low-density lipoprotein (LDL). This enzyme has been implicated in lowering the risk of cardiovascular disease. Anoxia-reoxygenation and oxidative stress are important elements in cardiovascular and cerebrovascular disease. However, the role of PON1 in anoxia-reoxygenation or anoxic injury is unclear. We hypothesize that PON1 prevents anoxia-reoxygenation injury. We set out to determine whether PON1 expression in Drosophila melanogaster protects against anoxia-reoxygenation (A-R) induced injury. Methods Wild type (WT) and transgenic PON1 flies were exposed to anoxia (100% Nitrogen) for different time intervals (from 1 to 24 hours). After the anoxic period, flies were placed in room air for reoxygenation. Activity and survival of flies was then recorded. Results Within 5 minutes of anoxia, all flies fell into a stupor state. After reoxygenation, survivor flies resumed activity with some delay. Interestingly, transgenic flies recovered from stupor later than WT. PON1 transgenic flies had a significant survival advantage after A-R stress compared with WT. The protection conferred by PON1 expression was present regardless of the age or dietary restriction. Furthermore, PON1 expression exclusively in CNS conferred protection. Conclusion Our results support the hypothesis that PON1 has a protective role in anoxia-reoxygenation injury, and its expression in the CNS is sufficient and necessary to provide a 100% survival protection.


Respirology | 2007

Beneficial effects of hydrocortisone and papaverine on a model of pulmonary embolism induced by autologous blood clots in isolated and perfused rabbit lungs

Humberto E. Trejo; Daniela Urich; Alejandro A. Pezzulo; Juan C. Caraballo; Jeydith Gutiérrez; Ignacio Castro; Greenmy R. Centeno; Roberto Sánchez de León

Background and objective:  Mechanical obstruction has been considered the prime determinant of haemodynamic changes after pulmonary embolism (PE); however, the function of vasoconstrictive and inflammatory mediators in the physiopathology of this disease is unclear. The aim of this investigation was to study the effect of an anti‐inflammatory and a vasodilator in a setting of induced PE.


American Journal of Respiratory Cell and Molecular Biology | 2016

Protein Kinase Cζ Inhibitor Promotes Resolution of Bleomycin-Induced Acute Lung Injury

Luis G. Vargas Buonfiglio; Mosaab Bagegni; Jennifer Borcherding; Jessica C. Sieren; Juan C. Caraballo; Andrew Reger; Joseph Zabner; Xiaopeng Li; Alejandro P. Comellas

Collaboration


Dive into the Juan C. Caraballo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer Borcherding

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alejandro A. Pezzulo

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge