Hailee L. Wingfield
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hailee L. Wingfield.
PLOS ONE | 2014
Sarah N. Fultz; Malia N. Melvin; Hailee L. Wingfield; Mary N. Woessner
Identifying portable methods to measure body composition may be more advantageous than using body mass index (BMI) to categorize associated health consequences. Purpose: To compare the validity and reliability of a portable A-mode ultrasound (US) to a criterion three compartment model (3C) for the measurement of body composition. Methods: Forty-seven overweight and obese subjects participated in this study. Body composition was measured once via air displacement plethysmography for body density (Bd) and bioelectrical impedance spectroscopy for total body water (TBW) for the 3C calculations. Ultrasound measurements (BodyMetrix, Intelametrix) were made using an A mode, 2.5- MHz transmitter. All measurements were made on the right side of the body at 7 skinfold sites. The US software calculated percent body fat (%BF), fat mass (FM) and fat free mass (FFM) from the 7-site Jackson and Pollock equation. Results: %BF and FM, respectively, measured by the US (29.1±6.5%; 27.4±8.1 kg) was significantly lower compared to the 3C model (33.7±7.6%; 31.8±9.8 kg; p<0.0005). Fat free mass was significantly higher for the US (66.7±13.0 kg) compared to the 3C model (62.3±12.6; p = 0.001). The US demonstrated respectable reliability for %BF, FM, and FFM with intraclass correlation coefficients (ICC) ranging from 0.84–0.98 and standard error of the measurement (SEM) values and 2.2%BF, 1.9 kg, 1.9 kg, respectively. Discussion: The US was found to under predict %BF and FM with large deviations from the criterion (n = 10>4%BF error). While the US was not valid in this population, it was reliable producing results with minimal error, suggesting this technique may be effective for tracking changes in a weight loss or clinical setting.
The Physician and Sportsmedicine | 2015
Malia N. Melvin; Hailee L. Wingfield
Abstract Introduction. High-intensity interval training (HIIT) is a time-efficient strategy shown to induce various cardiovascular and metabolic adaptations. Little is known about the optimal tolerable combination of intensity and volume necessary for adaptations, especially in clinical populations. Objectives: In a randomized controlled pilot design, we evaluated the effects of two types of interval training protocols, varying in intensity and interval duration, on clinical outcomes in overweight/obese men. Methods. Twenty-five men [body mass index (BMI) > 25 kg·m2] completed baseline body composition measures: fat mass (FM), lean mass (LM) and percent body fat (%BF) and fasting blood glucose, lipids and insulin (IN). A graded exercise cycling test was completed for peak oxygen consumption (VO2peak) and power output (PO). Participants were randomly assigned to high-intensity short interval (1MIN-HIIT), high-intensity interval (2MIN-HIIT) or control groups. 1MIN-HIIT and 2MIN-HIIT completed 3 weeks of cycling interval training, 3 days/week, consisting of either 10 × 1 min bouts at 90% PO with 1 min rests (1MIN-HIIT) or 5 × 2 min bouts with 1 min rests at undulating intensities (80%–100%) (2MIN-HIIT). Results. There were no significant training effects on FM (Δ1.06 ± 1.25 kg) or %BF (Δ1.13% ± 1.88%), compared to CON. Increases in LM were not significant but increased by 1.7 kg and 2.1 kg for 1MIN and 2MIN-HIIT groups, respectively. Increases in VO2peak were also not significant for 1MIN (3.4 ml·kg-1·min-1) or 2MIN groups (2.7 ml·kg-1·min-1). IN sensitivity (HOMA-IR) improved for both training groups (Δ-2.78 ± 3.48 units; p < 0.05) compared to CON. Conclusion. HIIT may be an effective short-term strategy to improve cardiorespiratory fitness and IN sensitivity in overweight males.
Journal of Strength and Conditioning Research | 2014
Malia N. Melvin; Hailee L. Wingfield; Eric D. Ryan; Eric T. Trexler; Erica J. Roelofs
Abstract Melvin, MN, Smith-Ryan, AE, Wingfield, HL, Ryan, ED, Trexler, ET, and Roelofs, EJ. Muscle characteristics and body composition of NCAA Division I football players. J Strength Cond Res 28(12): 3320–3329, 2014—The purpose of this study was to examine muscle characteristics of the vastus lateralis (VL) and body composition of National Collegiate Athletic Association (NCAA) Division I football players. Sixty-nine Division I football players (mean ± SD; age: 20.0 ± 1.1 years; height: 186.2 ± 7.0 cm; body mass: 106.3 ± 21.1 kg; %fat: 17.8 ± 4.6%) were stratified by player position, race, year, and starter status. A panoramic scan of the VL was performed using a GE Logiq-e B-mode ultrasound. Muscle cross-sectional area (mCSA) and echo intensity (EI) were determined using Image-J software from the VL scan. Body composition measures were determined using dual-energy x-ray absorptiometry (DXA). For mCSA, defensive linemen (DL: 46.7 ± 4.2 cm2) had significantly greater CSA (p ⩽ 0.05) than wide receivers (WR), linebackers (LB), defensive backs (DB), punters/kickers (PK), and running backs (RB). There were no significant differences for EI (p > 0.05) between positions. Offensive linemen and DL had significantly greater %fat than WR, LB, DB, PK, and RB (p ⩽ 0.05); greater lean mass than all other positions (p ⩽ 0.05); and more fat mass than quarterbacks, WR, LB, DB, PK, and RB (p ⩽ 0.05). There were no muscle or body composition differences for race, year, or starter status. Because no differences between positions were observed for EI measures, it may indicate that competitive athletes have increased muscle quality regardless of body composition differences. Ultrasound and DXA measures may be useful to identify muscle characteristics and imbalances if a player gains or loses weight, suffers an injury, or declines in performance.
Journal of Strength and Conditioning Research | 2015
Erica J. Roelofs; Malia N. Melvin; Hailee L. Wingfield; Eric T. Trexler; Nina Walker
Abstract Roelofs, EJ, Smith-Ryan, AE, Melvin, MN, Wingfield, HL, Trexler, ET, and Walker, N. Muscle size, quality, and body composition: Characteristics of Division I cross-country runners. J Strength Cond Res 29(2): 290–296, 2015—The primary purpose of this study was to identify the relationship between muscle cross-sectional area (mCSA), echo intensity (EI), and body composition of Division I cross-country runners. The secondary purpose was to examine differences in these variables in athletes stratified based on stress-fracture (SFx) history. Thirty-six athletes were stratified based on sex and SFx history. A panoramic scan vastus lateralis was performed using a GE Logiq-e B-mode ultrasound. Echo intensity and mCSA were determined from the scan using a grayscale imaging software (ImageJ). Body composition measures were determined using dual-energy x-ray absorptiometry. For females, mCSA was significantly correlated with left leg lean mass (LM; R = 0.54) and EI (R = −0.57). Lean mass was significantly correlated with bone mineral density (BMD; R = 0.58) and bone mineral content (BMC; R = 0.56), whereas BMC was also correlated with leg LM (R = 0.72). For males, mCSA was significantly correlated with leg LM (R = 0.66), BMD (R = 0.50), and BMC (R = 0.54). Leg LM was significantly correlated with BMD (R = 0.53) and BMC (R = 0.77). Personal best times for males were significantly correlated with fat mass (R = 0.489) and %fat (R = 0.556) for the 10- and 5-km races, respectively. Female and male athletes with a history of SFx were not significantly different across any variables when compared with athletes with no history. These correlations suggest that more muscle mass may associate with higher BMD and BMC for stronger bone structure. Modifications in training strategies to include heavy resistance training and plyometrics may be advantageous for preventing risk factors associated with SFx reoccurrence.
Clinical Physiology and Functional Imaging | 2014
Hailee L. Wingfield; Mary N. Woessner; Malia N. Melvin; Sarah N. Fultz; Rachel M. Graff
The purpose of this study was to evaluate the validity and reliability of air displacement plethysmography (ADP) compared to a dual energy x‐ray absorptiometry (DXA) criterion for body composition measurement in overweight and obese women (BMI ≥ 25·0 kg m2).
Ultrasound in Medicine and Biology | 2014
Malia N. Melvin; Hailee L. Wingfield; Sarah N. Fultz; Erica J. Roelofs
The purpose of this study was to evaluate the reliability of ultrasound measures of muscle cross-sectional area (mCSA) and echo intensity (EI) in overweight subjects. A secondary purpose was to evaluate racial differences in EI, mCSA and body composition. In 33 overweight subjects, mCSA and EI were determined from a panoramic ultrasound scan of the vastus lateralis. Body composition was determined using dual-energy X-ray absorptiometry (DXA). Reliability of mCSA and EI was calculated from the intra-class correlation coefficient (ICC), standard error of the measurement (SEM) and minimal difference (MD). The ICC, SEM and MD for mCSA and EI were 0.87, 2.12, 5.89 and 0.74, 4.58, 12.69, respectively. There were no significant racial differences in body composition (p > 0.05); however, EI was significantly lower for black subjects (p = 0.018). These results suggest ultrasound measures of mCSA and EI are reliable in overweight subjects, and EI may provide additional muscle composition evaluations, beyond DXA measures.
Applied Physiology, Nutrition, and Metabolism | 2014
Eric T. Trexler; Malia N. Melvin; Erica J. Roelofs; Hailee L. Wingfield
Recent research has shown that dietary nitrate has favorable effects on blood flow and exercise performance. The purpose of this randomized, double-blind, placebo-controlled crossover study was to investigate the acute effects of pomegranate extract on blood flow, vessel diameter, and exercise performance in active individuals. Nineteen men and women (mean ± SD: age, 22.2 ± 2.2 years; height, 174.8 ± 10.7 cm; body mass, 71.9 ± 13.5 kg) were randomly assigned to a placebo (PL) or pomegranate extract (PE) group. Participants performed a maximal oxygen consumption treadmill test to determine peak velocity (PV). Participants returned after 24-48 h and ingested either PL or PE. Brachial artery blood flow was assessed using ultrasound at baseline and 30 min post-ingestion (30minPI). Three treadmill runs to exhaustion were performed at 90%, 100%, and 110% PV. Blood flow was assessed immediately after each exercise bout and 30 min postexercise (30minPEx). After a 7-10 day washout, participants repeated the same procedures, ingesting the opposite supplement. Separate repeated measures ANOVAs were performed for blood flow, vessel diameter, and time to exhaustion (TTE). Blood flow was significantly augmented (p = 0.033) 30minPI with PE in comparison with PL. Vessel diameter was significantly larger (p = 0.036) 30minPEx with PE. Ingestion of PE was found to significantly augment TTE at 90% (p = 0.009) and 100% PV (p = 0.027). Acute ingestion of PE 30 min before exercise may enhance vessel diameter and blood flow and delay fatigue during exercise. Results of the current study indicate that PE is ergogenic for intermittent running, eliciting beneficial effects on blood flow.
Journal of Sports Sciences | 2016
Eric T. Trexler; Hailee L. Wingfield; Malia N.M. Blue
ABSTRACT The purpose of this study was to evaluate two practical interval training protocols on cardiorespiratory fitness, lipids and body composition in overweight/obese women. Thirty women (mean ± SD; weight: 88.1 ± 15.9 kg; BMI: 32.0 ± 6.0 kg · m2) were randomly assigned to ten 1-min high-intensity intervals (90%VO2 peak, 1 min recovery) or five 2-min high-intensity intervals (80–100% VO2 peak, 1 min recovery) or control. Peak oxygen uptake (VO2 peak), peak power output (PPO), body composition and fasting blood lipids were evaluated before and after 3 weeks of training, completed 3 days per week. Results from ANCOVA analyses demonstrated no significant training group differences for any primary variables (P > 0.05). When training groups were collapsed, 1MIN and 2MIN resulted in a significant increase in PPO (∆18.9 ± 8.5 watts; P = 0.014) and time to exhaustion (∆55.1 ± 16.4 s; P = 0.001); non-significant increase in VO2 peak (∆2.36 ± 1.34 ml · kg−1 · min−1; P = 0.185); and a significant decrease in fat mass (FM) (−∆1.96 ± 0.99 kg; P = 0.011). Short-term interval exercise training may be effective for decreasing FM and improving exercise tolerance in overweight and obese women.
Sports Medicine - Open | 2015
Hailee L. Wingfield; Malia N. Melvin; Erica J. Roelofs; Eric T. Trexler; Anthony C. Hackney; Mark A. Weaver; Eric D. Ryan
Background The purpose of this study was to examine the effect of exercise modality and pre-exercise carbohydrate (CHO) or protein (PRO) ingestion on post-exercise resting energy expenditure (REE) and respiratory exchange ratio (RER) in women. Methods Twenty recreationally active women (mean ± SD; age 24.6 ± 3.9 years; height 164.4 ± 6.6 cm; weight 62.7 ± 6.6 kg) participated in this randomized, crossover, double-blind study. Each participant completed six exercise sessions, consisting of three exercise modalities: aerobic endurance exercise (AEE), high-intensity interval running (HIIT), and high-intensity resistance training (HIRT); and two acute nutritional interventions: CHO and PRO. Salivary samples were collected before each exercise session to determine estradiol-β-17 and before and after to quantify cortisol. Post-exercise REE and RER were analyzed via indirect calorimetry at the following: baseline, immediately post (IP), 30 minutes (30 min) post, and 60 minutes (60 min) post exercise. A mixed effects linear regression model, controlling for estradiol, was used to compare mean longitudinal changes in REE and RER. Results On average, HIIT produced a greater REE than AEE and HIRT (p < 0.001) post exercise. Effects of AEE and HIRT were not significantly different for post-exercise REE (p = 0.1331). On average, HIIT produced lower RER compared to either AEE or HIRT after 30 min (p < 0.001 and p = 0.0169, respectively) and compared to AEE after 60 min (p = 0.0020). On average, pre-exercise PRO ingestion increased post-exercise REE (p = 0.0076) and decreased post-exercise RER (p < 0.0001) compared to pre-exercise CHO ingestion. Conclusion HIIT resulted in the largest increase in REE and largest reduction in RER. Electronic supplementary material The online version of this article (doi:10.1186/s40798-015-0010-3) contains supplementary material, which is available to authorized users.
Clinical Physiology and Functional Imaging | 2014
Mary N. Woessner; Malia N. Melvin; Hailee L. Wingfield; Anthony C. Hackney
Beta‐alanine (BA) supplementation has been shown to delay neuromuscular fatigue as a result of increased muscle carnosine concentrations. Carnosine has also been found in brain and cardiac tissue. The physical working capacity test at heart rate threshold (PWCHRT) is a global estimate of the onset of fatigue during exercise, influenced by central and peripheral factors. The purpose of this study was to determine the effects of 28 days of BA supplementation on the PWCHRT. Thirty subjects (mean ± SD; age: 21·0 ± 2·1 years; body mass: 72·7 ± 14·5 kg; height: 170·1 ± 7·9 cm) were randomly assigned to BA (n = 15) or placebo (PL, n = 15) groups. Testing included eight to nine total visits: an enrolment day, physical screening, peak oxygen consumption (V·O2peak) and two PWCHRT assessments over 4 days. Significant differences existed between BA and PL for PWCHRT (P = 0·001; mean∆: BA∆ = +24·2 watts, PL∆ = +11·2 watts), but not for V·O2peak (P = 0·222), time to exhaustion (TTE; P = 0·562) or ventilatory threshold (VT; P = 0·134). Results suggest that BA may increase heart rate training threshold. These results, in combination with one previous study reporting a potential effect of BA on HR, suggest that future studies should evaluate both central and peripheral aspects of fatigue with BA intake.