Hailei Zhang
Broad Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hailei Zhang.
Nature | 2012
Michael F. Berger; Eran Hodis; Timothy P. Heffernan; Yonathan Lissanu Deribe; Michael S. Lawrence; Alexei Protopopov; Elena S Ivanova; Ian R. Watson; Elizabeth Nickerson; Papia Ghosh; Hailei Zhang; Rhamy Zeid; Xiaojia Ren; Kristian Cibulskis; Andrey Sivachenko; Nikhil Wagle; Antje Sucker; Carrie Sougnez; Robert C. Onofrio; Lauren Ambrogio; Daniel Auclair; Timothy Fennell; Scott L. Carter; Yotam Drier; Petar Stojanov; Meredith A. Singer; Douglas Voet; Rui Jing; Gordon Saksena; Jordi Barretina
Melanoma is notable for its metastatic propensity, lethality in the advanced setting and association with ultraviolet exposure early in life. To obtain a comprehensive genomic view of melanoma in humans, we sequenced the genomes of 25 metastatic melanomas and matched germline DNA. A wide range of point mutation rates was observed: lowest in melanomas whose primaries arose on non-ultraviolet-exposed hairless skin of the extremities (3 and 14 per megabase (Mb) of genome), intermediate in those originating from hair-bearing skin of the trunk (5–55 per Mb), and highest in a patient with a documented history of chronic sun exposure (111 per Mb). Analysis of whole-genome sequence data identified PREX2 (phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2)—a PTEN-interacting protein and negative regulator of PTEN in breast cancer—as a significantly mutated gene with a mutation frequency of approximately 14% in an independent extension cohort of 107 human melanomas. PREX2 mutations are biologically relevant, as ectopic expression of mutant PREX2 accelerated tumour formation of immortalized human melanocytes in vivo. Thus, whole-genome sequencing of human melanoma tumours revealed genomic evidence of ultraviolet pathogenesis and discovered a new recurrently mutated gene in melanoma.
Cell | 2016
Michele Ceccarelli; Floris P. Barthel; Tathiane Maistro Malta; Thais S. Sabedot; Sofie R. Salama; Bradley A. Murray; Olena Morozova; Yulia Newton; Amie Radenbaugh; Stefano Maria Pagnotta; Samreen Anjum; Jiguang Wang; Ganiraju C. Manyam; Pietro Zoppoli; Shiyun Ling; Arjun A. Rao; Mia Grifford; Andrew D. Cherniack; Hailei Zhang; Laila M. Poisson; Carlos Gilberto Carlotti; Daniela Tirapelli; Arvind Rao; Tom Mikkelsen; Ching C. Lau; W. K. Alfred Yung; Raul Rabadan; Jason T. Huse; Daniel J. Brat; Norman L. Lehman
Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole-genome sequencing data analysis determined that ATRX but not TERT promoter mutations are associated with increased telomere length. Recent advances in glioma classification based on IDH mutation and 1p/19q co-deletion status were recapitulated through analysis of DNA methylation profiles, which identified clinically relevant molecular subsets. A subtype of IDH mutant glioma was associated with DNA demethylation and poor outcome; a group of IDH-wild-type diffuse glioma showed molecular similarity to pilocytic astrocytoma and relatively favorable survival. Understanding of cohesive disease groups may aid improved clinical outcomes.
Cell | 2012
Jian Hu; Soyoon Sarah Hwang; Marc Liesa; Boyi Gan; Ergun Sahin; Mariela Jaskelioff; Zhihu Ding; Haoqiang Ying; Adam T. Boutin; Hailei Zhang; Shawn F. Johnson; Elena Ivanova; Maria Kost-Alimova; Alexei Protopopov; Yaoqi Alan Wang; Orian S. Shirihai; Lynda Chin; Ronald A. DePinho
To assess telomerase as a cancer therapeutic target and determine adaptive mechanisms to telomerase inhibition, we modeled telomerase reactivation and subsequent extinction in T cell lymphomas arising in Atm(-/-) mice engineered with an inducible telomerase reverse transcriptase allele. Telomerase reactivation in the setting of telomere dysfunction enabled full malignant progression with alleviation of telomere dysfunction-induced checkpoints. These cancers possessed copy number alterations targeting key loci in human T cell lymphomagenesis. Upon telomerase extinction, tumor growth eventually slowed with reinstatement of telomere dysfunction-induced checkpoints, yet growth subsequently resumed as tumors acquired alternative lengthening of telomeres (ALT) and aberrant transcriptional networks centering on mitochondrial biology and oxidative defense. ALT+ tumors acquired amplification/overexpression of PGC-1β, a master regulator of mitochondrial biogenesis and function, and they showed marked sensitivity to PGC-1β or SOD2 knockdown. Genetic modeling of telomerase extinction reveals vulnerabilities that motivate coincidental inhibition of mitochondrial maintenance and oxidative defense mechanisms to enhance antitelomerase cancer therapy.
Cell | 2012
Zhihu Ding; Chang Jiun Wu; Mariela Jaskelioff; Elena Ivanova; Maria Kost-Alimova; Alexei Protopopov; Gerald C. Chu; Guocan Wang; Xin Lu; Emma S. Labrot; Jian Hu; Wei Wang; Yonghong Xiao; Hailei Zhang; Jianhua Zhang; Jingfang Zhang; Boyi Gan; Samuel R. Perry; Shan Jiang; Liren Li; James W. Horner; Y. Alan Wang; Lynda Chin; Ronald A. DePinho
To determine the role of telomere dysfunction and telomerase reactivation in generating pro-oncogenic genomic events and in carcinoma progression, an inducible telomerase reverse transcriptase (mTert) allele was crossed onto a prostate cancer-prone mouse model null for Pten and p53 tumor suppressors. Constitutive telomerase deficiency and associated telomere dysfunction constrained cancer progression. In contrast, telomerase reactivation in the setting of telomere dysfunction alleviated intratumoral DNA-damage signaling and generated aggressive cancers with rearranged genomes and new tumor biological properties (bone metastases). Comparative oncogenomic analysis revealed numerous recurrent amplifications and deletions of relevance to human prostate cancer. Murine tumors show enrichment of the TGF-β/SMAD4 network, and genetic validation studies confirmed the cooperative roles of Pten, p53, and Smad4 deficiencies in prostate cancer progression, including skeletal metastases. Thus, telomerase reactivation in tumor cells experiencing telomere dysfunction enables full malignant progression and provides a mechanism for acquisition of cancer-relevant genomic events endowing new tumor biological capabilities.
Cancer Cell | 2010
Hongwu Zheng; Haoqiang Ying; Ruprecht Wiedemeyer; Haiyan Yan; Steven N. Quayle; Elena Ivanova; Ji Hye Paik; Hailei Zhang; Yonghong Xiao; Samuel R. Perry; Jian Hu; Anant Vinjamoori; Boyi Gan; Ergun Sahin; Milan G. Chheda; Cameron Brennan; Y. Alan Wang; William C. Hahn; Lynda Chin; Ronald A. DePinho
A hallmark feature of glioblastoma is its strong self-renewal potential and immature differentiation state, which contributes to its plasticity and therapeutic resistance. Here, integrated genomic and biological analyses identified PLAGL2 as a potent protooncogene targeted for amplification/gain in malignant gliomas. Enhanced PLAGL2 expression strongly suppresses neural stem cell (NSC) and glioma-initiating cell differentiation while promoting their self-renewal capacity upon differentiation induction. Transcriptome analysis revealed that these differentiation-suppressive activities are attributable in part to PLAGL2 modulation of Wnt/beta-catenin signaling. Inhibition of Wnt signaling partially restores PLAGL2-expressing NSC differentiation capacity. The identification of PLAGL2 as a glioma oncogene highlights the importance of a growing class of cancer genes functioning to impart stem cell-like characteristics in malignant cells.
Cancer Discovery | 2011
Haoqiang Ying; Kutlu G. Elpek; Anant Vinjamoori; Zimmerman Sm; Gerald C. Chu; Haiyan Yan; Eliot Fletcher-Sananikone; Hailei Zhang; Yingchun Liu; Wei Wang; Xiaojia Ren; Hongwu Zheng; Alec C. Kimmelman; Ji Hye Paik; Carol Lim; Samuel R. Perry; Shan Jiang; Brian Malinn; Alexei Protopopov; Simona Colla; Yonghong Xiao; Nabeel Bardeesy; Shannon J. Turley; Y. Alan Wang; Lynda Chin; Sarah P. Thayer; Ronald A. DePinho
Initiation of pancreatic ductal adenocarcinoma (PDAC) is driven by oncogenic KRAS mutation, and disease progression is associated with frequent loss of tumor suppressors. In this study, human PDAC genome analyses revealed frequent deletion of the PTEN gene as well as loss of expression in primary tumor specimens. A potential role for PTEN as a haploinsufficient tumor suppressor is further supported by mouse genetic studies. The mouse PDAC driven by oncogenic Kras mutation and Pten deficiency also sustains spontaneous extinction of Ink4a expression and shows prometastatic capacity. Unbiased transcriptomic analyses established that combined oncogenic Kras and Pten loss promotes marked NF-κB activation and its cytokine network, with accompanying robust stromal activation and immune cell infiltration with known tumor-promoting properties. Thus, PTEN/phosphoinositide 3-kinase (PI3K) pathway alteration is a common event in PDAC development and functions in part to strongly activate the NF-κB network, which may serve to shape the PDAC tumor microenvironment.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Haoqiang Ying; Hongwu Zheng; Kenneth L. Scott; Ruprecht Wiedemeyer; Haiyan Yan; Carol Lim; Joseph Huang; Sabin Dhakal; Elena Ivanova; Yonghong Xiao; Hailei Zhang; Jian Hu; Jayne M. Stommel; Michelle Lee; An Jou Chen; Ji Hye Paik; Oreste Segatto; Cameron Brennan; Lisa A. Elferink; Y. Alan Wang; Lynda Chin; Ronald A. DePinho
Glioblastoma multiforme (GBM) is the most common and lethal primary brain cancer that is driven by aberrant signaling of growth factor receptors, particularly the epidermal growth factor receptor (EGFR). EGFR signaling is tightly regulated by receptor endocytosis and lysosome-mediated degradation, although the molecular mechanisms governing such regulation, particularly in the context of cancer, remain poorly delineated. Here, high-resolution genomic profiles of GBM identified a highly recurrent focal 1p36 deletion encompassing the putative tumor suppressor gene, Mig-6. We show that Mig-6 quells the malignant potential of GBM cells and dampens EGFR signaling by driving EGFR into late endosomes and lysosome-mediated degradation upon ligand stimulation. Mechanistically, this effect is mediated by the binding of Mig-6 to a SNARE protein STX8, a protein known to be required for late endosome trafficking. Thus, Mig-6 functions to ensure recruitment of internalized receptor to late endosomes and subsequently the lysosomal degradation compartment through its ability to specifically link EGFR and STX8 during ligand-stimulated EGFR trafficking. In GBM, the highly frequent loss of Mig-6 would therefore serve to sustain aberrant EGFR-mediated oncogenic signaling. Together, these data uncover a unique tumor suppression mechanism involving the regulation of receptor trafficking.
Genes & Development | 2015
Fotini M. Kouri; Lisa A. Hurley; Weston L. Daniel; Emily S. Day; Youjia Hua; Liangliang Hao; Chian Yu Peng; Timothy J. Merkel; Markus A. Queisser; Carissa Ritner; Hailei Zhang; C. David James; Jacob I. Sznajder; Lynda Chin; David A. Giljohann; John A. Kessler; Marcus E. Peter; Chad A. Mirkin; Alexander H. Stegh
Glioblastoma multiforme (GBM) is a lethal, therapy-resistant brain cancer consisting of numerous tumor cell subpopulations, including stem-like glioma-initiating cells (GICs), which contribute to tumor recurrence following initial response to therapy. Here, we identified miR-182 as a regulator of apoptosis, growth, and differentiation programs whose expression level is correlated with GBM patient survival. Repression of Bcl2-like12 (Bcl2L12), c-Met, and hypoxia-inducible factor 2α (HIF2A) is of central importance to miR-182 anti-tumor activity, as it results in enhanced therapy susceptibility, decreased GIC sphere size, expansion, and stemness in vitro. To evaluate the tumor-suppressive function of miR-182 in vivo, we synthesized miR-182-based spherical nucleic acids (182-SNAs); i.e., gold nanoparticles covalently functionalized with mature miR-182 duplexes. Intravenously administered 182-SNAs penetrated the blood-brain/blood-tumor barriers (BBB/BTB) in orthotopic GBM xenografts and selectively disseminated throughout extravascular glioma parenchyma, causing reduced tumor burden and increased animal survival. Our results indicate that harnessing the anti-tumor activities of miR-182 via safe and robust delivery of 182-SNAs represents a novel strategy for therapeutic intervention in GBM.
Cancer Discovery | 2012
Giannicola Genovese; Ayla Ergun; Sachet A. Shukla; Benito Campos; Jason A. Hanna; Papia Ghosh; Steven N. Quayle; Kunal Rai; Simona Colla; Haoquiang Ying; Chang-Jiun Wu; Sharmistha Sarkar; Yonghong Xiao; Jianhua Zhang; Hailei Zhang; Lawrence Kwong; Katherine Dunn; Wolf Ruprecht Wiedemeyer; Cameron Brennan; Hongwu Zheng; David L. Rimm; James J. Collins; Lynda Chin
UNLABELLED Leveraging The Cancer Genome Atlas (TCGA) multidimensional data in glioblastoma, we inferred the putative regulatory network between microRNA and mRNA using the Context Likelihood of Relatedness modeling algorithm. Interrogation of the network in context of defined molecular subtypes identified 8 microRNAs with a strong discriminatory potential between proneural and mesenchymal subtypes. Integrative in silico analyses, a functional genetic screen, and experimental validation identified miR-34a as a tumor suppressor in proneural subtype glioblastoma. Mechanistically, in addition to its direct regulation of platelet-derived growth factor receptor-alpha (PDGFRA), promoter enrichment analysis of context likelihood of relatedness-inferred mRNA nodes established miR-34a as a novel regulator of a SMAD4 transcriptional network. Clinically, miR-34a expression level is shown to be prognostic, where miR-34a low-expressing glioblastomas exhibited better overall survival. This work illustrates the potential of comprehensive multidimensional cancer genomic data combined with computational and experimental models in enabling mechanistic exploration of relationships among different genetic elements across the genome space in cancer. SIGNIFICANCE We illustrate here that network modeling of complex multidimensional cancer genomic data can generate a framework in which to explore the biology of cancers, leading to discovery of new pathogenetic insights as well as potential prognostic biomarkers. Specifically in glioblastoma, within the context of the global network, promoter enrichment analysis of network edges uncovered a novel regulation of TGF-β signaling via a Smad4 transcriptomic network by miR-34a.
Genes & Development | 2012
An Jou Chen; Ji Hye Paik; Hailei Zhang; Sachet A. Shukla; Richard M. Mortensen; Jian Hu; Haoqiang Ying; Baoli Hu; Jessica A. Hurt; Natalie G. Farny; Caroline Dong; Yonghong Xiao; Y. Alan Wang; Pamela A. Silver; Lynda Chin; Shobha Vasudevan; Ronald A. DePinho
Multidimensional cancer genome analysis and validation has defined Quaking (QKI), a member of the signal transduction and activation of RNA (STAR) family of RNA-binding proteins, as a novel glioblastoma multiforme (GBM) tumor suppressor. Here, we establish that p53 directly regulates QKI gene expression, and QKI protein associates with and leads to the stabilization of miR-20a; miR-20a, in turn, regulates TGFβR2 and the TGFβ signaling network. This pathway circuitry is substantiated by in silico epistasis analysis of its components in the human GBM TCGA (The Cancer Genome Atlas Project) collection and by their gain- and loss-of-function interactions in in vitro and in vivo complementation studies. This p53-QKI-miR-20a-TGFβ pathway expands our understanding of the p53 tumor suppression network in cancer and reveals a novel tumor suppression mechanism involving regulation of specific cancer-relevant microRNAs.