Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hailing Jin is active.

Publication


Featured researches published by Hailing Jin.


The Plant Cell | 2008

The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance.

Wen-Xue Li; Youko Oono; Jianhua Zhu; Xin-Jian He; Jian-Min Wu; Kei Iida; Xiao-Yan Lu; Xinping Cui; Hailing Jin; Jian-Kang Zhu

Nuclear factor Y (NF-Y) is a ubiquitous transcription factor composed of three distinct subunits (NF-YA, NF-YB, and NF-YC). We found that the Arabidopsis thaliana NFYA5 transcript is strongly induced by drought stress in an abscisic acid (ABA)-dependent manner. Promoter:β-glucuronidase analyses showed that NFYA5 was highly expressed in vascular tissues and guard cells and that part of the induction by drought was transcriptional. NFYA5 contains a target site for miR169, which targets mRNAs for cleavage or translational repression. We found that miR169 was downregulated by drought stress through an ABA-dependent pathway. Analysis of the expression of miR169 precursors showed that miR169a and miR169c were substantially downregulated by drought stress. Coexpression of miR169 and NFYA5 suggested that miR169a was more efficient than miR169c at repressing the NFYA5 mRNA level. nfya5 knockout plants and plants overexpressing miR169a showed enhanced leaf water loss and were more sensitive to drought stress than wild-type plants. By contrast, transgenic Arabidopsis plants overexpressing NFYA5 displayed reduced leaf water loss and were more resistant to drought stress than the wild type. Microarray analysis indicated that NFYA5 is crucial for the expression of a number of drought stress–responsive genes. Thus, NFYA5 is important for drought resistance, and its induction by drought stress occurs at both the transcriptional and posttranscriptional levels.


The EMBO Journal | 2000

Transcriptional repression by AtMYB4 controls production of UV‐protecting sunscreens in Arabidopsis

Hailing Jin; Eleonora Cominelli; Paul Bailey; Adrian J. Parr; Frank Mehrtens; Jonathon Jones; Chiara Tonelli; Bernd Weisshaar; Cathie Martin

An Arabidopsis thaliana line that is mutant for the R2R3 MYB gene, AtMYB4, shows enhanced levels of sinapate esters in its leaves. The mutant line is more tolerant of UV‐B irradiation than wild type. The increase in sinapate ester accumulation in the mutant is associated with an enhanced expression of the gene encoding cinnamate 4‐hydroxylase, which appears to be the principal target of AtMYB4 and an effective rate limiting step in the synthesis of sinapate ester sunscreens. AtMYB4 expression is downregulated by exposure to UV‐B light, indicating that derepression is an important mechanism for acclimation to UV‐B in A.thaliana. The response of target genes to AtMYB4 repression is dose dependent, a feature that operates under physiological conditions to reinforce the silencing effect of AtMYB4 at high activity. AtMYB4 works as a repressor of target gene expression and includes a repression domain. It belongs to a novel group of plant R2R3 MYB proteins involved in transcriptional silencing. The balance between MYB activators and repressors on common target promoters may provide extra flexibility in transcriptional control.


Plant Molecular Biology | 1999

Multifunctionality and diversity within the plant MYB-gene family

Hailing Jin; Cathie Martin

MYB proteins constitute a diverse class of DNA-binding proteins of particular importance in transcriptional regulation in plants. Members are characterised by having a structurally conserved DNA-binding domain, the MYB domain. Different categories of MYB proteins can be identified depending on the number of imperfect repeats of the MYB domain they contain. It is likely that single MYB-domain proteins, a class of expanding importance in plants, bind DNA in a different way than two-repeat or three-repeat MYB proteins, and these groups are therefore likely to have different functions. The two-repeat (R2R3) MYB family is the largest family characterised in plants, and there are estimated to be over 100 members in Arabidopsis. Functions of MYB proteins in plants include regulation of secondary metabolism, control of cellular morphogenesis and regulation of meristem formation and the cell cycle. Although functional similarities exist between R2R3 MYB proteins that are closely related structurally, there are significant differences in the ways very similar proteins function in different species and also within the same organism. Therefore, despite the large number of R2R3 MYB proteins in plants, it is unlikely that many are precisely redundant in their functions, but more likely that they share overlapping functions.


Proceedings of the National Academy of Sciences of the United States of America | 2006

A pathogen-inducible endogenous siRNA in plant immunity

Surekha Katiyar-Agarwal; Rebekah Morgan; Douglas Dahlbeck; Omar Borsani; Andy Villegas; Jian-Kang Zhu; Brian J. Staskawicz; Hailing Jin

RNA interference, mediated by small interfering RNAs (siRNAs), is a conserved regulatory process that has evolved as an antiviral defense mechanism in plants and animals. It is not known whether host cells also use siRNAs as an antibacterial defense mechanism in eukaryotes. Here, we report the discovery of an endogenous siRNA, nat-siRNAATGB2, that is specifically induced by the bacterial pathogen Pseudomonas syringae carrying effector avrRpt2. We demonstrate that the biogenesis of this siRNA requires DCL1, HYL1, HEN1, RDR6, NRPD1A, and SGS3. Its induction also depends on the cognate host disease resistance gene RPS2 and the NDR1 gene that is required for RPS2-specified resistance. This siRNA contributes to RPS2-mediated race-specific disease resistance by repressing PPRL, a putative negative regulator of the RPS2 resistance pathway.


Science | 2013

Fungal Small RNAs Suppress Plant Immunity by Hijacking Host RNA Interference Pathways

Arne Weiberg; Ming Wang; Feng-Mao Lin; Hongwei Zhao; Zhihong Zhang; Isgouhi Kaloshian; Hsien-Da Huang; Hailing Jin

RNA on the Attack Plant microbial pathogens often work through protein effectors that are delivered into the plant cells to disrupt critical cellular functions. Weiberg et al. (p. 118; see the Perspective by Baulcombe) have now found that small RNAs (sRNAs) of the fungus Botrytis cinerea can play a similar role. After fungal infection of tomato or Arabidopsis leaves, the plant cells contained a suite of fungal-derived sRNAs. Three sRNAs were found to bind to the plants own Argonaute protein, thereby silencing the plants fungal defense genes. A pathogenic fungus delivers small RNA molecules to disable gene regulatory systems in the target plant. [Also see Perspective by Baulcombe] Botrytis cinerea, the causative agent of gray mold disease, is an aggressive fungal pathogen that infects more than 200 plant species. Here, we show that some B. cinerea small RNAs (Bc-sRNAs) can silence Arabidopsis and tomato genes involved in immunity. These Bc-sRNAs hijack the host RNA interference (RNAi) machinery by binding to Arabidopsis Argonaute 1 (AGO1) and selectively silencing host immunity genes. The Arabidopsis ago1 mutant exhibits reduced susceptibility to B. cinerea, and the B. cinerea dcl1 dcl2 double mutant that can no longer produce these Bc-sRNAs displays reduced pathogenicity on Arabidopsis and tomato. Thus, this fungal pathogen transfers “virulent” sRNA effectors into host plant cells to suppress host immunity and achieve infection, which demonstrates a naturally occurring cross-kingdom RNAi as an advanced virulence mechanism.


Molecular Cell | 2011

Arabidopsis Argonaute 2 Regulates Innate Immunity via miRNA393*-Mediated Silencing of a Golgi-Localized SNARE Gene, MEMB12

Xiaoming Zhang; Hongwei Zhao; Shang Gao; Wei-Chi Wang; Surekha Katiyar-Agarwal; Hsien-Da Huang; Natasha V. Raikhel; Hailing Jin

Argonaute (AGO) proteins are critical components of RNA silencing pathways that bind small RNAs and mediate gene silencing at their target sites. We found that Arabidopsis AGO2 is highly induced by the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Further genetic analysis demonstrated that AGO2 functions in antibacterial immunity. One abundant species of AGO2-bound small RNA is miR393b(∗), which targets a Golgi-localized SNARE gene, MEMB12. Pst infection downregulates MEMB12 in a miR393b(∗)-dependent manner. Loss of function of MEMB12, but not SYP61, another intracellular SNARE, leads to increased exocytosis of an antimicrobial pathogenesis-related protein, PR1. Overexpression of miR393b(∗) resembles memb12 mutant in resistance responses. Thus, AGO2 functions in antibacterial immunity by binding miR393b(∗) to modulate exocytosis of antimicrobial PR proteins via MEMB12. Since miR393 also contributes to antibacterial responses, miR393(∗)/miR393 represent an example of a miRNA(∗)/miRNA pair that functions in immunity through two distinct AGOs: miR393(∗) through AGO2 and miR393 through AGO1.


Annual Review of Phytopathology | 2010

Role of Small RNAs in Host-Microbe Interactions

Surekha Katiyar-Agarwal; Hailing Jin

Plant defense responses against pathogens are mediated by activation and repression of a large array of genes. Host endogenous small RNAs are essential in this gene expression reprogramming process. Here, we discuss recent findings on pathogen-regulated host microRNAs (miRNAs) and small interfering RNAs (siRNAs) and their roles in plant-microbe interaction. We further introduce small RNA pathway components, including Dicer-like proteins (DCLs), double-stranded RNA (dsRNA) binding protein, RNA-dependent RNA polymerases (RDRs), small RNA methyltransferase HEN1, and Argonaute (AGO) proteins, that contribute to plant immune responses. The strategies that pathogens have evolved to suppress host small RNA pathways are also discussed. Collectively, host small RNAs and RNA silencing machinery constitute a critical layer of defense in regulating the interaction of pathogens with plants.


Plant Physiology | 2003

Comparative Analyses of Potato Expressed Sequence Tag Libraries

Catherine M. Ronning; Svetlana Stegalkina; Robert A. Ascenzi; Oleg Bougri; Amy L. Hart; Teresa R. Utterbach; Susan E. Vanaken; Steve B. Riedmuller; Joseph White; Jennifer Cho; Geo Pertea; Yuandan Lee; Svetlana Karamycheva; Razvan Sultana; Jennifer Tsai; John Quackenbush; H. M. Griffiths; Silvia Restrepo; Christine D. Smart; William E. Fry; Rutger Van der Hoeven; Steve Tanksley; Peifen Zhang; Hailing Jin; Miki L. Yamamoto; Barbara Baker; C. Robin Buell

The cultivated potato (Solanum tuberosum) shares similar biology with other members of the Solanaceae, yet has features unique within the family, such as modified stems (stolons) that develop into edible tubers. To better understand potato biology, we have undertaken a survey of the potato transcriptome using expressed sequence tags (ESTs) from diverse tissues. A total of 61,940 ESTs were generated from aerial tissues, below-ground tissues, and tissues challenged with the late-blight pathogen (Phytophthora infestans). Clustering and assembly of these ESTs resulted in a total of 19,892 unique sequences with 8,741 tentative consensus sequences and 11,151 singleton ESTs. We were able to identify a putative function for 43.7% of these sequences. A number of sequences (48) were expressed throughout the libraries sampled, representing constitutively expressed sequences. Other sequences (13,068, 21%) were uniquely expressed and were detected only in a single library. Using hierarchal and k means clustering of the EST sequences, we were able to correlate changes in gene expression with major physiological events in potato biology. Using pair-wise comparisons of tuber-related tissues, we were able to associate genes with tuber initiation, dormancy, and sprouting. We also were able to identify a number of characterized as well as novel sequences that were unique to the incompatible interaction of late-blight pathogen, thereby providing a foundation for further understanding the mechanism of resistance.


Cell | 2009

An effector of RNA-directed DNA methylation in arabidopsis is an ARGONAUTE 4- and RNA-binding protein.

Xin-Jian He; Yi Feng Hsu; Shihua Zhu; Andrzej T. Wierzbicki; Olga Pontes; Hailiang Liu; Co Shine Wang; Hailing Jin; Jian-Kang Zhu

DNA methylation is a conserved epigenetic mark in plants and mammals. In Arabidopsis, DNA methylation can be triggered by small interfering RNAs (siRNAs) through an RNA-directed DNA methylation (RdDM) pathway. Here, we report the identification of an RdDM effector, KTF1. Loss-of-function mutations in KTF1 reduce DNA methylation and release the silencing of RdDM target loci without abolishing the siRNA triggers. KTF1 has similarity to the transcription elongation factor SPT5 and contains a C-terminal extension rich in GW/WG repeats. KTF1 colocalizes with ARGONAUTE 4 (AGO4) in punctate nuclear foci and binds AGO4 and RNA transcripts. Our results suggest KTF1 as an adaptor protein that binds scaffold transcripts generated by Pol V and recruits AGO4 and AGO4-bound siRNAs to form an RdDM effector complex. The dual interaction of an effector protein with AGO and small RNA target transcripts may be a general feature of RNA-silencing effector complexes.


Nature | 2010

An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation

Zhihuan Gao; Hailiang Liu; Lucia Daxinger; Olga Pontes; Xin-Jian He; Weiqiang Qian; Huixin Lin; Mingtang Xie; Zdravko J. Lorković; Shoudong Zhang; Daisuke Miki; Xiangqiang Zhan; Dominique Pontier; Thierry Lagrange; Hailing Jin; Antonius J. M. Matzke; Marjori Matzke; Jian-Kang Zhu

DNA methylation is an important epigenetic mark in many eukaryotes. In plants, 24-nucleotide small interfering RNAs (siRNAs) bound to the effector protein, Argonaute 4 (AGO4), can direct de novo DNA methylation by the methyltransferase DRM2 (refs 2, 4–6). Here we report a new regulator of RNA-directed DNA methylation (RdDM) in Arabidopsis: RDM1. Loss-of-function mutations in the RDM1 gene impair the accumulation of 24-nucleotide siRNAs, reduce DNA methylation, and release transcriptional gene silencing at RdDM target loci. RDM1 encodes a small protein that seems to bind single-stranded methyl DNA, and associates and co-localizes with RNA polymerase II (Pol II, also known as NRPB), AGO4 and DRM2 in the nucleus. Our results indicate that RDM1 is a component of the RdDM effector complex and may have a role in linking siRNA production with pre-existing or de novo cytosine methylation. Our results also indicate that, although RDM1 and Pol V (also known as NRPE) may function together at some RdDM target sites in the peri-nucleolar siRNA processing centre, Pol II rather than Pol V is associated with the RdDM effector complex at target sites in the nucleoplasm.

Collaboration


Dive into the Hailing Jin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shang Gao

University of California

View shared research outputs
Top Co-Authors

Avatar

Ming Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Xiaoming Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Arne Weiberg

University of California

View shared research outputs
Top Co-Authors

Avatar

Hongwei Zhao

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xuefeng Zhou

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yifan Lii

University of California

View shared research outputs
Top Co-Authors

Avatar

Hsien-Da Huang

National Chiao Tung University

View shared research outputs
Researchain Logo
Decentralizing Knowledge